Mostrando postagens com marcador Cálculo. Mostrar todas as postagens
Mostrando postagens com marcador Cálculo. Mostrar todas as postagens

Exercício Resolvido - Pontos de máximo, mínimo e sela

Ache os pontos de máximo e mínimo locais e pontos de sela da função:


Solução:
Dado o seguinte teorema temos:

Teorema: Dada a função f(x, y): ℝ² →  tal que existam pontos de máximo ou mínimo locais no interior do seu domínio. Se nestes pontos existirem as derivadas parciais de primeira ordem de f(x,y), então elas são nulas.

Com isso, calculamos as derivadas parciais da função f(x,y):



Fazendo



Assim, temos que:



Que só admite soluções reais do tipo:



Assim, esses são os potos críticos. Para saber se são pontos de máximo local, mínimo local ou de sela, temos que calcular as derivadas parciais de f de segunda ordem e o determinante da matriz Hessiana ( [H] ):



Assim, devemos observar o seguinte teorema:

Teorema: Dada a função f: ℝ² →  e (x0, y0) um ponto crítico de f . Então:
a) Se det[H] no ponto (x0, y0) for menor que zero, então (x0, y0) é um ponto de sela;
b) Se det[H] no ponto (x0, y0) for maior que zero e também no ponto (x0, y0),
é um ponto de mínimo local;
c) Se det[H] no ponto (x0, y0) for maior que zero e também no ponto (x0, y0),
então (x0, y0) é um ponto de máximo local e;
d) Se det[H] no ponto (x0, y0) for igual a zero, então nada podemos afirmar.

Obs.: Vale a pena ressaltar que este teorema só vale para a matriz [H] sendo 2x2.

Cálculo das derivadas parciais de segunda ordem:


Determinante da matriz Hessiana:


No ponto (1,1):

Logo, este é um ponto de mínimo local;

No ponto (-1,-1):

Logo, este também é um ponto de mínimo local;

No ponto (0,0):

Logo, este é um ponto de sela;

Abaixo, veja a superfície formada por f(x,y) e os pontos (1,1), (0,0) e (-1,-1) representados em preto;

Pontos de máximo, mínimo e sela





Exercício Resolvido - Continuidade, limite e derivada parcial

Seja a função $ f: \Re ^2 \, \rightarrow \, \Re $ dada por:
$$ f(x,y) =
\left \{
\begin{array}{cc}
\frac{ x^3 y^2 }{x^4 + y^4}, & (x,y) \neq (0,0) \\
0, & (x,y) = (0,0) \\
\end{array}
\right. $$

mostre que ela é contínua em (0,0) e determine as derivadas parciais $ f_x (0,0) $ e $ f_y (0,0) $.

Solução:
Para verificar a continuidade devemos calcular o limite abaixo e ele deve dar zero:

$$ \lim_{(x,y) \rightarrow (0,0) } \frac{ x^3 y^2 }{x^4 + y^4} $$

Para continuar, é preciso perceber que todo valor ao quadrado é positivo ou zero, assim:
$ \left ( x^2 \, - \, y^2 \right )^2 \, \geq \, 0 $
$ x^4 \, - \, 2 x^2 y^2 \, + \, y^4 \, \geq \, 0 $
$ x^4 \, + \, y^4 \, \geq 2 x^2 y^2 $
$ \frac{1}{2} \, \geq \, \frac{x^2 y^2}{x^4 \, + \, y^4} $

Como só temos termos ao quadrado e à quarta, $ \frac{x^2 y^2}{x^4 \, + \, y^4} $ certamente não é negativo, assim:

$$ \frac{1}{2} \, \geq \, \frac{x^2 y^2}{x^4 \, + \, y^4} \, \geq \, 0 $$

Logo, o termo $ \frac{x^2 y^2}{x^4 \, + \, y^4} $ é limitado. Assim, fazendo a igualdade e substituindo $ \frac{x^2 y^2}{x^4 \, + \, y^4} \, = \, t $ temos:

$$ \lim_{(x,y) \rightarrow (0,0) } x \times \left ( \frac{ x^2 y^2 }{x^4 + y^4} \right ) = \lim_{(x,y) \rightarrow (0,0) }{ x \times t} $$

Como $ x \, \rightarrow \, 0 $ e $ t $ é limitado, o limite é zero:

$$ \lim_{(x,y) \rightarrow (0,0) }{ x \times t} \, = \, 0 $$

Perceba na figura a seguir como realmente a superfície tende a zero em qualquer direção:

Limite




Veja também:
Exercício Resolvido - Reta tangente à intersecção de superfícies
Exercício Resolvido - Multiplicadores de Lagrange
Exercício Resolvido - Pontos de máximo, mínimo e sela

As derivadas parciais no ponto (0,0) devem ser calculadas pela definição:

$$ f_x (0,0) \, = \, \lim_{h \rightarrow 0 }{ \frac{f(h,0) - f(0,0)}{h}} \, = \, \lim_{h \rightarrow 0 }{ \frac{h^3 0^2}{h^4+0^4}} \, - \, 0 \, = \, 0 $$
$$ f_y (0,0) \, = \, \lim_{h \rightarrow 0 }{ \frac{f(0,h) - f(0,0)}{h}} \, = \, \lim_{h \rightarrow 0 }{ \frac{0^3 h^2}{0^4+h^4}} \, - \, 0 \, = \, 0 $$

Logo:

$$ f_x(0,0) \, = \, 0 $$
$$ f_y(0,0) \, = \, 0 $$

Veja na figura a seguir a reta f(x,0) em vermelho e a reta f(0,y) em amarelo. Perceba que elas não variam e são identicamente nulas, ou seja, f(x,0) = 0 e f(0,y) = 0 para qualquer valor de x ou y. Isso garante que a derivada parcial destas funções no ponto (0,0) deve ser zero pois a função não varia nas direções (1,0) e (0,1), confirmando o que foi obtido anteriormente. Ainda, para ser mais abrangente, as derivadas parciais serão sempre nulas se x = 0 ou se y = 0 (ou, claro, se ambos forem nulos).

Continuidade



Exercício Resolvido - Integral

Calcule as seguintes integrais:
1) Cos²(x)*Tan³(x)
2) Sec⁴(x/2)
3) Senⁿ(x)
4) Sen⁴(x)


Solução:

1)



Substituindo na integral:


Como há uma subtração no integrando, podemos separar em duas integrais


Simplificando a segunda integral temos:


Como a derivada de Cos(x) = -Sen(x), vou chamar Cos(x) de 'u', ou seja, Cos(x) = u, logo, derivando de ambos os lados -Sen(x)dx = du.
Fazendo a substituição nas integrais:

Onde k1 e k2 são constantes arbitrárias que podemos substituir por k1 + k2 = k. Porém, como u = Cos(x).


2) Neste, a integral será com limites:


Para utilizar a integração por partes:


Nomeando convenientemente cada um dos fatores do integrando:


Integrando por partes:



Substituindo Tan(x/2) = u, onde du = (1/2)Sec²(x/2)dx


Como u = Tan(x/2)


Como Tan(0) = 0




Veja também:
O que é Integral?
Exercício Resolvido - Integrais
Exercício Resolvido - Integral de √(4 /x⁴-x²)
Exercício resolvido - Integral - Cálculo da área abaixo das curvas
Dedução da Área da elipse usando apenas conhecimentos de cálculo I


3) Integrando Senⁿ(x) por partes


Mas, das relações trigonométricas temos que Cos²(x) + Sen²(x) = 1, ou seja, Cos²(x) = 1 - Sen²(x)


Assim:



4) Usando o resultado do exercício 3) para n = 4, temos:


Para calcular a integral de Sen²(x) é possível utilizar o resultado obtido no exercício 3) também, para n = 2.


Onde C é uma constante qualquer.
Das relações trigonométricas temos que Sen(2x) = 2Sen(x)Cos(x)


Assim, substituindo:


Porém, como C é uma constante arbitrária, 3C/4 também será. Assim, para facilitar pode-se usar K = 3C/4




Exercício Resolvido - Limite e função

Seja o conjunto de funções do tipo fn(x) = -(1/kn²)x + 2/kn, onde kn assume qualquer valor real positivo. Determine qual é a função g(x) formada pela intersecção de infinitas retas do tipo fn, conforme figura a seguir.
Limite e função


Solução:
Veja que na figura acima as retas do gráfico foram para os valores de k = n/3, para n = 1,2,3,...,12, conforme figura que segue:


Quando estas retas são sobrepostas é que é possível ver a tendência à formação de uma outra curva, neste caso ilustrada em preto na figura ilustrativa do exercício. Porém, é importante perceber que não é simplesmente a intersecção das retas que gera esta curva, mas sim a intersecção das retas mais próximas, ou seja, a intersecção da reta para k = 1/3 com a reta para k = 4 não fica na fronteira formadora da curva desejada. Além disso, a formação da curva acontece à medida que os valores de k se aproximam. Perceba na figura abaixo que, na verdade, a curva g(x) não passa pelos pontos de intersecção das retas, mas a medida que os valores de k se tornam mais próximos, o ponto de intersecção passa a se aproximar de g(x).


Neste caso, as retas foram formadas para k1 = 2 e k2 = 2/3.
Para k1 = 0,95 e k2 = 1,05 foi preciso dar um zoom na figura para poder ver exatamente o que acontece, pois o ponto de intersecção das retas se aproxima muito da curva em preto:


Veja que o ponto esta mais próximo, mas a curva g(x) ainda não passa por ele. Na verdade o ponto de intersecção das retas será um ponto da curva g(x) apenas no limite para k1 tendendo a k2.

Neste caso então, vou supor que k2 = k1 + eps, onde 'eps' é um valor muito pequeno, depois irei fazer ele tender a zero. Assim, substituindo na equação fn(x) temos:


Mas no ponto de intersecção, f1(x) = f2(x)


Assim, calculamos o valor de x no ponto de intersecção. Chamarei de xo:


Fazendo o limite para eps tendendo a zero, temos:
Substituindo na equação f1 para x = xo = k1 temos:
Obs.: Se xo = k1 fosse substituído na função f2, para k2 = k1 + eps com eps tendendo a zero, o resultado seria o mesmo, já que estamos procurando o ponto de intersecção.

Assim, temos que no limite, para k1 tendendo a k2 (ou seja, para eps tendendo a zero) o ponto de intersecção das curvas é dado pelo par ordenado (k1, 1/k1). Ou seja, y = 1/x. Logo, a função g(x) definida pelas retas é:

g(x) = 1/x

Veja a seguir o gráfico com 100 curvas e, no gráfico da direita em preto, a curva g(x) = 1/x