Exercício Resolvido - Resistência Equivalente Circuito 2

Calcule a resistência equivalente da associação mista de resistores entre os pontos A e B no circuito abaixo:

Circuito 2

Valor Resistor

Solução:

O resistor de 2Ω entre os pontos D e F e o resistor de 4Ω entre os pontos F e E estão em série e podem ser somados, ficando:

As duas resistências de 6Ω entre os pontos D e E estão em paralelo. Utilizando a regra da assossiação de resistores em paralelo, o circuito fica:
Como é possível observar, os resistores de 3Ω entre os pontos D e E e os pontos E e C estão em série. Somando-os temos um resistor de 6Ω, como pode ser visto a seguir:
Observa-se que os resistores de 6Ω estão em paralelo. Calculando-os temos:
Seguindo o mesmo raciocínio, percebe-se que os resistores de 3Ω estão em série, resultando num resistor de 6Ω, que estará em paralelo com o resistor de 6Ω já existente.
Calculando a resistência equivalente da associação em paralelo dos resistores de 6Ω, temos:
Assim, ficam restando apenas duas resistências em série, uma de 1Ω e outra de 3Ω. Somando-as, temos a resistência equivalente entre os pontos A e B = 4Ω.

< CIRCUITO 1                                                                              CIRCUITO 3 >


3 comentários:

  1. como achar a corrente em cada resistor

    ResponderExcluir
    Respostas
    1. Para achar a corrente é preciso definir uma tensão. A partir disso aplicar lei das malhas.

      Excluir
  2. Nesse mesmo circuito com mesmos valores eu preciso saber a resistência equivalente entre os pontos A e E, e também entre os pontos A e F.
    E a tensão em cada resistor com 12V e 10V.
    Obrigado

    ResponderExcluir