Mostrando postagens com marcador Limite. Mostrar todas as postagens
Mostrando postagens com marcador Limite. Mostrar todas as postagens

Limite fundamental exponencial (Euler)

Comprovação com uso da análise da existência do limite fundamental de Euler

Neste post será comprovada a existência do limite fundamental exponencial.
Para isto, será utilizado o seguinte teorema e a seguinte proposição:


O limite a ser calculado é dado por:
Demonstração da existência do Limite de Euler

Assim, definimos
Temos que a função f(x) acima tem seu domínio no conjunto dos reais exceto o zero. Como queremos o limite para x tendendo ao infinito, então o zero não será um problema. Neste caso, podemos definir a sequência xn = n, onde n são números inteiros e portanto a sequência esta contida no domínio da função f(x), podendo ser aplicado o Teorema 1.
Desta forma:


Porém, como n é inteiro, podemos escrever f(n) em binômio de Newton na forma de uma série:


Para seguir com os cálculos é importante saber se f(n) é crescente ou decrescente, pois isso irá nos permitir concluir se existe o limite exponencial.
Sabemos que:


Agora, para verificar se é crescente ou decrescente, irei iniciar o estudo supondo que a função é crescente e assim, saber se isso é verdadeiro ou não. Se ela for crescente, então f(n) < f(n+1), ou seja:


Na etapa (3) acima, é possível verificar que o termos de dentro do somatório do lado esquerdo é negativo e portanto a desigualdade é verdadeira, o que garante que f(n) é crescente como suposto inicialmente.

Agora, um passo importante é saber se f(n) é limitado, ou seja, que existe um K tal que, para qualquer n, f(n) < K. Com isso, da Proposição 1, é possível garantir que f(n) converge.

Verificando se f(n) é limitada superiormente:


O somatório obtido acima é a soma de uma PG, que é facilmente calculado:


Logo, temos que f(n) é limitada superiormente e crescente, o que garante que o limite existe. O valor do limite não é possível ser calculado sem o uso de um software ou mesmo de recursos envolvendo derivada ou série de Taylor, que a meu entender são conteúdos que estão a frente destes aplicados aqui.

Porém, caso deseja-se calcular este limite, pode ser feito com o uso da regra de L'Hopital, por exemplo:


Substituindo a variável 1/x = y e após isso aplicando L'Hopital, temos:



Exercício Resolvido - Limite

Calcule ou mostre que não existe, sem aplicar L'Hôpital e/ou aproximações polinomiais.

Solução:
Para resolver esses limites, um teorema deve ser enunciado:

Teorema 1Sejam as funções f,g: D →
Sejam as constantes a Є D’ e b1,b2 Є tais que limx→a f(x) = b1 limx→a g(x) = b2
Então:
a) limx→a (f + g)(x) = b1 + b2
b) limx→a (f*g)(x) = b1*b2
c) Se b2 ≠ 0  limx→a (f/g)(x) = b1/b2
Onde D’ são os pontos de acumulação do domínio de f e g.

a)

Fazendo uma substituição de variável u = sen(x)/cos(x) = tg(x) onde para x tendendo a zero, u também tende a zero, adotando o Teorema 1 e conhecendo o limite:
temos que:
Gráfico da função:

b) Para quem não percebeu (ou para quem não sabe ainda), esse limite é a derivada da função seno.
Percebam que no limite, x → a, ou seja, x é um pouco diferente de a, mas muito próximo de a. Assim, podemos dizer que x = a + h, sendo que no limite, h → 0.
Como a é uma constante, cos(a) e sen(a) também é constante e poderá sair de dentro do limite quando estiver multiplicando. 
Conhecendo o limx→0 sen(x)/x mencionado no exercício anterior, temos:
Mas:
Onde limh→0 sen(h)/h = 1 e limh→0 sen(h)/[cos(h)+1] = 0/2 = 0. Logo, 1*0 = 0. Portanto:
Assim, voltando ao exercício:
Gráfico da função para a = 0 em azul, a π/4 em vermelho e a = π/2 em preto:

c)Para resolver este exercício, devemos fatorar os polinômios que estão dentro da raiz:
1-x³ = (1-x)*(x² + x + 1)
x²-1 = (x-1)*(x+1)

Da divisão, o termo (x-1) pode ser simplificado, ficando:
Gráfico da função em azul e em vermelho uma reta horizontal passando pela raiz cúbica de -3/2.