Exercícios Resolvido - (UFG 06) - Achar o resto da divisão

(UFG 06) O maior número primo conhecido foi descoberto no ano passado por Martin Nowak. Ele é dado por 225.964.951 –  1. (GALILEU, São Paulo, n. 169, ago. 2005. p. 43). Considerando o algoritmo de Euclides para a divisão por 8 desse número, pode-se escrever a equação 225.964.951 –  1 = 8k + r. Então o resto r da divisão por 8 do maior primo conhecido é:       

a) 0       b) 2       c) 5       d) 6       e) 7

Solução:



Assim:



Substituindo



Como



Logo:



Assim, temos que

.

Letra e)


Exercício Resolvido - Conjuntos

Em uma sala de aula, 21 alunos falam francês, 20 não falam inglês, 32 só falam inglês e 45 só falam um desses dois idiomas. Pergunta-se:
a) Qual o total de alunos da sala?
b) Quantos falam os dois idiomas?

Solução:
Então temos os seguintes casos:
Alunos que falam somente francês: Vou chamar de F
Alunos que falam somente inglês: Vou chamar de I
Alunos que falam os dois idiomas: Vou chamar de IF
Alunos que não falam nenhum idioma: Vou chamar de N

F + IF = 21, pois 21 falam francês
F + N = 20, pois 20 não falam ingês
I = 32, pois 32 falam somente inglês
F + I = 45, pois 45 falam um, e apenas um, desses dois idiomas.

Assim:
F + I = 45
I = 32
Temos que F = 13

F = 13
F + IF = 21
IF = 8

F = 13
F + N = 20
N = 7

Assim, o total de aluno é:
F + I + IF + N = 13 + 32 + 8 + 7 = 60 alunos

IF = 8, logo 8 falam os dois idiomas.


Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 27

Se α e β são dois ângulos complementares, então o determinante da matriz:
é igual a:


(A) -6
(B) -2
(C) 0
(D) 2
(E) 6

Solução:
- Ângulos complementares são ângulos que somados tem como resultado 90°
Como o determinante dessa matriz será:
Sen(α)Cos(β)*2*0 + 1*1*2 + (-1)*Sen(β)Cos(α)*4 - (-1)*2*2 - 1*4*Sen(α)Cos(β) - 0*1*Sen(β)Cos(α)
= 0 + 2 - 4Sen(β)Cos(α) + 4 - 4Sen(α)Cos(β) - 0 = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β)


Mas, das propriedades trigonométricas sabe-se que:
Sen(a + b) = Sen(a)Cos(b) + Sen(b)Cos(a)


Logo:
Det = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β) = 6 - 4*[Sen(β)Cos(α) + Sen(α)Cos(β)]
Det = 6 - 4*[Sen(α + β)]
Det = 6 - 4*[Sen(90°)]
Det = 6 - 4*[1] = 6 - 4 = 2


Letra (D)


Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 26

Considere a sequência numérica an, ∈ ℕ definida por:

O termo an pode ser obtido através de:
(A) n∙log(2)
(B) (n+2)∙log(2)
(C) [n∙(n+1)/2]∙log(2)
(D) log(2ⁿ-1)
(E) log(2⁺¹-2)


Solução:
Utilizando a seguinte propriedade de logaritmo:
log(xⁿ) = n∙log(x), podemos dizer que:

an+1 = an + log(2⁺¹)
an+1 = an + (n+1)log(2)

Assim:
an = an-1 + n∙log(2)
Substituindo:

an+1 =  an-1 + n∙log(2)  + (n+1)log(2)

Se continuássemos com estas substituições:
an-1 = an-2 + (n-1)∙log(2)

an+1 =  an-2 + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
...

an+1 =  a1 + 2∙log(2) + 3∙log(2) + 4∙log(2) + ... + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
an+1 =  a1 + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Como a1 = log(2)
an+1 =  log(2) + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
an+1 =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Ainda, o termo an, que é o que interssa nesse exercício, é obtido por:
an =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n ]
Perceba que dentro do [] existe a soma de uma PA (aula sobre Progressão Aritmética), que é dada pela fórmula:
S = (a1 + an)*(n/2) = (1 + n)*(n/2)
Assim,
an =  log(2)∙(1 + n)*(n/2)



Exercício resolvido - IME CG 2009/2010 - Estática

Duas barras AC e BD estão apoiadas e ligadas por pinos sem atrito, conforme a figura. As barras, de 4 m de comprimento, são feitas de material homogêneo e possuem massa linear igual a  5 kg/m. Sabendo que as barras formam um sistema em equilíbrio no momento em que o ponto  D é tracionado em  300 N e que, no meio da barra  AC, é colocado um corpo com 20 litros de volume, determine as reações horizontal e vertical, em Newtons, nos pontos A e B.
  Dados:
aceleração gravitacional = 10 m/s²
3 = 1,7
massa específica do corpo = 2000 kg/m³

Solução:
Como o sistema esta em equilíbrio temos que:
∑F = 0 (Somatório da forças = 0)
∑M = 0 (Somatório dos momentos = 0)

Para facilitar, vou decompor a força 300 N na direção horizontal e vertical. Além disso, como o corpo na barra AC tem 20 litros de volume (ou 0,02 m³) e que sua massa específica é de 2000 kg/m³, temos que sua massa é:
0,02*2000 = 40 kg
Como a aceleração da gravidade é 10 m/s²
Peso do corpo = 400 N.

Ambas as barras tem massa de 5 kg/m* 4 m = 20 kg, pesando 200 N cada uma.

Assim temos:
Observe que no ponto C existem 4 forças, 2 delas são a reação na barra AC, e duas na barra BD

Neste tipo de exercício, é interessante 'separarmos' as barras, já que cada uma delas deve estar em equilíbrio  pois não estão se movendo e nem girando.
Estudo da barra AC:


Equilíbrio das forças verticais:
RCVAC + 200 + 400 + RAV = 0
RCVAC = - 600 - RAV

Equilíbrio das forças horizontais:
RAH - RCHAC = 0
RAH = RCHAC

Momento em relação a qualquer ponto é nulo.
Vou fazer em relação ao ponto C, já que não estou interessado em calcular as forças em C, e sim em A e B:
RAV*4 + 400*2 + 200*2 = 0
RAV*4 = -1200

Disso, temos que:
RCVAC = -600 - RAV = - 600 + 300 = - 300 N

Obs.: É importante perceber que as forças que atuam no ponto C quando estudamos apenas a barra AC tem um sentido, porém ao estudarmos a barra BD, estas forças terão sentido contrário, já que serão a reação da barra AC na barra BD. Assim como os vetores dessas forças estão em sentidos contrários, RCVAC = RCVBD e RCHAC = RCHBD.
Estudo da barra BD:
Equilíbrio das forças verticais:
RBV - 200 +  RCVBD + 300*sen(30°) = 0
RBV - 200 +  RCVBD + 150 = 0
RBV +  RCVBD = 50

Equilíbrio das forças horizontais:
RBH + RCHBD + 300*cos(30°) = 0
RBH + RCHBD + 255 = 0
RBH + RCHBD = -255

Momento resultante em relação a qualquer ponto é nulo:
Novamente irei calcular em relação ao ponto C:
300*cos(30°)*1 - RBH*3 = 0
3RBH = 255
RBH = 85 N

Como RBH + RCHBD = -255
RCHBD = - 340 N

Falta resolver:
RAH = RCHAC
RBV +  RCVBD = 50
Sabemos que:
RCVBD = RCVAC = - 300 = - 300 N, logo, RCVBD = - 300 N
RCHBD = RCHAC = -340 N, logo, RCHAC = - 340 N

Com isso
RAH = - 340 N
RBV - 300 = 50
RBV = 350 N
Assim:
Forças em A:
RAV = -300 N
RAH = -340 N
Forças em B:
RBV = 350 N
RBH = 85 N

PS: Agora sim, certamente esta correto este exercício. Depois de algumas correções e momentos de reflexão (rs), esta é a resposta. Podem confiar..