Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 26

Considere a sequência numérica an, ∈ ℕ definida por:

O termo an pode ser obtido através de:
(A) n∙log(2)
(B) (n+2)∙log(2)
(C) [n∙(n+1)/2]∙log(2)
(D) log(2ⁿ-1)
(E) log(2⁺¹-2)


Solução:
Utilizando a seguinte propriedade de logaritmo:
log(xⁿ) = n∙log(x), podemos dizer que:

an+1 = an + log(2⁺¹)
an+1 = an + (n+1)log(2)

Assim:
an = an-1 + n∙log(2)
Substituindo:

an+1 =  an-1 + n∙log(2)  + (n+1)log(2)

Se continuássemos com estas substituições:
an-1 = an-2 + (n-1)∙log(2)

an+1 =  an-2 + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
...

an+1 =  a1 + 2∙log(2) + 3∙log(2) + 4∙log(2) + ... + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
an+1 =  a1 + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Como a1 = log(2)
an+1 =  log(2) + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
an+1 =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Ainda, o termo an, que é o que interssa nesse exercício, é obtido por:
an =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n ]
Perceba que dentro do [] existe a soma de uma PA (aula sobre Progressão Aritmética), que é dada pela fórmula:
S = (a1 + an)*(n/2) = (1 + n)*(n/2)
Assim,
an =  log(2)∙(1 + n)*(n/2)



Um comentário: