Determine a razão entre o volume da esfera e o volume do cubo da figura abaixo sabendo que a esfera tangencia três faces do cubo e o plano secante formado pelo hexágono. Os pontos do hexágono são pontos médios das 6 arestas do cubo.
Solução:
Para definirmos a esfera é preciso conhecer as coordenadas do seu centro e o seu raio.
O exercício nos fala que a esfera tangencia 4 planos:
- Plano superior definido por z = a (onde a é a aresta do cubo e z o eixo vertical);
- Plano lateral esquerdo definido por y = 0;
- Plano frontal definido por x = a e;
- Plano formado pelo hexágono.
Dos planos tangentes sabe-se que o vetor formado pelo ponto central da esfera e o ponto de tangência é perpendicular ao plano tangente. Por exemplo, no caso do plano z = a (superior) se o ponto de tangência é definido por (x1, y1, a) e o ponto do centro da esfera definido por (xc, yc, zc) temos que o vetor V = (xc - x1, yc - y1, zc - a) é perpendicular ao plano z = a. Como o vetor (1, 1, 0) é paralelo ao plano z = a, então:
<(xc - x1, yc - y1, zc - a),(1,1,0)> = 0
O que nos leva que:
xc = x1
yc = y1
Este resultado é bastante intuitivo pois se a esfera é tangente ao plano z = a, então o centro dela terá coordenadas xc e yc iguais às coordenadas x1 e y1 já que este plano é paralelo ao plano formado pelo eixos xy. O mesmo raciocínio pode ser usado para os planos y = 0 e x = a. No caso de y = 0, seja (x2, 0, z2) o ponto de tangência da esfera. Assim, xc = x2 e zc = z2. Da tangência com o plano x = a, temos o ponto (a, y3, z3), neste caso, yc = y3 e zc = z3. Na figura abaixo fica mais fácil de perceber isso.
Na figura acima, em preto tracejado estão as reta que ligam o centro da esfera com os pontos de tangência nas faces do cubo e em verde, os pontos de tangência. Perceba que no caso do ponto de tangência com o plano superior do cubo, a linha que liga o centro da esfera com ele é totalmente vertical, logo as coordenadas x e y de ambos os pontos devem ser iguais. O mesmo raciocínio pode ser feito aos outros dois pontos. Assim, já podemos concluir que:
x1 = x2 = xc
y1 = y3 = yc
z2 = z3 = zc
Agora, verificando a tangência com o hexágono.
Como em qualquer caso de tangência de um plano com uma esfera, a linha que une o ponto de tangência com o centro da esfera é perpendicular ao plano.
Do plano do hexágono nós conhecemos 6 pontos (os vértices do hexágono). Com apenas três deles é possível definir um plano. Usarei os pontos (a/2, a, a), (0, a/2, a) e (a, a, a/2) para definir o plano.
Neste caso podemos definir dois vetores:
V1 = (a/2, a, a) - (a, a, a/2) = (-a/2, 0, a/2) = (-1,0,1)
V2 = (a/2, a, a) - (0, a/2, a) = (a/2, a/2, 0) = (1,1,0)
Com o produto vetorial destes vetores podemos obter o vetor perpendicular ao plano formado pelo hexágono. Este vetor é importante pois define o plano.
Assim, o plano é definido por:
<(-1,1,-1), (x-a, y-a, z-a/2)> = 0
-(x-a) + (y-a) - (z-a/2) = 0
-x + a + y - a - z + a/2 = 0
x - y + z = a/2
z = a/2 + y - x
Logo, podemos definir genericamente o ponto de tangência da esfera com o plano do hexágono:
P4 = (x, y, a/2 + y - x)
já que este ponto pertence ao plano.
Assim, já conhecemos, genericamente, os 4 pontos de tangência, são eles:
P1 = (xc, yc, a)
P2 = (xc, 0, zc)
P3 = (a, yc, zc)
P4 = (x4, y4, a/2 + y4 - x4)
Porém, todos estes pontos pertencem à esfera, logo devem satisfazer a equação da esfera, dada por:
(x - xc)² + (y - yc)² + (z - zc)² = r²
Onde r é o raio da esfera.
Assim, para cada ponto temos:
P1:
(xc - xc)² + (yc - yc)² + (a - zc)² = r²
(a - zc)² = r²
zc = a - r
P2:
(xc - xc)² + (0 - yc)² + (zc - zc)² = r²
yc² = r²
yc = r
P3:
(a - xc)² + (yc - yc)² + (zc - zc)² = r²
xc = a - r
P4:
(x4 - xc)² + (y4 - yc)² + (a/2 + y4 - x4 - zc)² = r²
A equação para o ponto P4 ainda não vou desenvolvê-la pois vai ficar muito grande. É mais conveniente manter ela "guardada" a depois de obter outros resultados que possam simplificá-la, voltamos a ela.
Do plano formado pelo hexágono podemos definir dois vetores que serão úteis:
- Vetor com origem no centro da esfera e final no ponto de tangência com o hexágono:
V4 = (x4, y4, a/2 + y4 - x4) - (xc, yc, zc) = (x4 - xc, y4 - yc, a/2 + y4 - x4 - zc)
Este vetor é perpendicular ao plano, e portanto paralelo ao vetor V3 = (-1, 1, -1)
- Um vetor paralelo ao plano, com origem e término em quaisquer dois pontos do plano. Usarei os ponto:
(a, a/2, 0) e (0, a/2, a) para definir este vetor:
V5 = (a, a/2, 0) - (0, a/2, a) = (a, 0, -a) = (1, 0, -1)
Este vetor é paralelo ao plano e portanto perpendicular ao vetor V4.
Se V4 é perpendicular a V5, então o produto escalar entre eles será zero:
<(x4 - xc, y4 - yc, a/2 + y4 - x4 - zc), (1, 0, -1)> = 0
x4 - xc - a/2 - y4 + x4 + zc = 0
y4 = - xc - a/2 + 2x4 + zc
Como zc = xc
y4 =2x4 - a/2
Se V4 é paralelo a V3, então o produto vetorial entre eles é um vetor nulo:
Com os resultados que já obtemos até aqui, podemos simplificar o vetor V4:
V4 = (x4 - xc, y4 - yc, a/2 + y4 - x4 - zc) = (x4 - xc, 2x4 - a/2 - yc, a/2 + 2x4 - a/2 - x4 - zc)
V4 = (x4 - a + r, 2x4 - a/2 - r, x4 - a + r)
Assim, o produto vetorial fica:
Como o produto é um vetor nulo, temos que:
x4 = a/2
Assim:
y4 = 2x4 - a/2 = a/2
Voltando à equação (x4 - xc)² + (y4 - yc)² + (a/2 + y4 - x4 - zc)² = r², temos que:
(a/2 - a + r)² + (a/2 - r)² + (a/2 + a/2 - a/2 - a + r)² = r²
(-a/2 + r)² + (a/2 - r)² + (- a/2 + r)² = r²
Como (a/2 - r)² = (-a/2 + r)², pois ambos estão ao quadrado, temos:
Porém, a solução r1 é maior que a, o que é incompatível, já que o raio da esfera não pode ser maior que o lado do cubo. Portanto, o raio da esfera é igual a r2.
Assim, a razão entre os volumes vale:
A seguir é possível verificar a esfera, os planos tangentes e os pontos de tangência.