Exercício Resolvido - MRU e MRUV, Mosca e trem.

Um trem esta numa estação A, inicialmente em repouso e parte com aceleração de 0,3 m/s².
Numa estação B parte do repouso outro trem, com aceleração de 0,1 m/s².
Pousada em seu nariz há uma mosca que neste mesmo instante passa a voar retilineamente em direção ao trem B com velocidade constante de 15 m/s.

Ambos os trens deslocam-se um de encontro ao outro e a distância inicial deles é de 500 m.
A mosca que inicialmente estava no nariz do trem A voa e encosta no B. Após isso, sem alterar sua velocidade, retorna e encosta no trem A, repetindo este procedimento até que os trens se chocam e a mosca morre esmagada.

a) Qual o tempo que levará até que a mosca morra esmagada?
b) Qual o deslocamento de cada um dos trens?
c) Qual a distância percorrida pela mosca?

Solução

a) A equação que descreve a posição dos trens é a equação do MRUV (Movimento Retilíneo Uniformemente Variado), já que ambos possuem aceleração constante.

SA = SoA + VoA*t + aA*t²/2
SB = SoB + VoB*t + aB*t²/2

Considerando que o trem A desloca-se em uma direção positiva (ou seja, com isso o deslocamento de B será negativo, já que os trens se deslocam em direções opostas) e que a sua posição inicial é a origem, temos que SoA = 0 e que SoB = 500 m. Como ambos os trens partem do repouso temos que suas equações da posição de cada trem ficam:

SA = aA*t²/2
SB = 500 + aB*t²/2

Como o trem B se desloca numa direção negativa, sua aceleração é negativa, aB = -0,1 m/s², logo:

SA = 0,3*t²/2
SB = 500 - 0,1*t²/2

Quando os trens se chocam, ambos estão no mesmo ponto, logo SA = SB. E com isso podemos calcular o tempo que leva até eles se chocarem:

SA = SB
0,3*t²/2 = 500 - 0,1*t²/2
Multiplicando tudo por 2
0,3*t² = 1000 - 0,1*t²
Com isso
0,4*t² = 1000
t² = 2500
t = 50 s

b) Como o tempo que os trens levam para se chocarem é de 50 s, basta substituir este tempo nas equações da posição dos trens e ver quanto eles se deslocaram. Para o trem A:

SA = 0,3*t²/2
SA = 0,3*50²/2
SA = 375 m
Logo o deslocamento do trem A é de 375 m.

Para o trem B:

SB = 500 - 0,1*t²/2
SB = 500 - 0,1*50²/2
SB = 500 - 125
SB = 375 m

Este resultado não é o quanto o trem B se DESLOCOU, mas sim a POSIÇÃO do trem B após os 50 s. Como deveria ser, veja que o resultado é o mesmo do trem A, o que é bastante óbvio já que eles se chocam e para isso precisam estar na mesma posição. Para saber o deslocamento do trem B, basta lembrar que ele partiu do ponto SoB = 500 m. Se no fim ele estava no ponto 375 m, então ele se deslocou:

500 - 375 = 125 m
Logo, o deslocamento do trem B é de 125 m.

c) Para o cálculo de quanto a mosca percorreu basta usar as equações de MRU (Movimento Retilíneo Uniforme) pois a velocidade da mosca não se altera em momento nenhum.

SMOSCA = VMOSCA*t

Como já sabemos o tempo (t = 50 s) e a velocidade dela é de 15 m/s:

SMOSCA = 15*50 = 750 m
Logo, a distância percorrida pela mosca é de 750 m.

Comentários:
A distância percorrida pela mosca é maior que a distância entre os trens, o que parece ser bem estranho. Porém lembre-se que a mosca fica "indo e voltando" de um trem para o outro e por isso acaba percorrendo uma distância maior que os 500 m.


Limite fundamental exponencial (Euler)

Comprovação com uso da análise da existência do limite fundamental de Euler

Neste post será comprovada a existência do limite fundamental exponencial.
Para isto, será utilizado o seguinte teorema e a seguinte proposição:


O limite a ser calculado é dado por:
Demonstração da existência do Limite de Euler

Assim, definimos
Temos que a função f(x) acima tem seu domínio no conjunto dos reais exceto o zero. Como queremos o limite para x tendendo ao infinito, então o zero não será um problema. Neste caso, podemos definir a sequência xn = n, onde n são números inteiros e portanto a sequência esta contida no domínio da função f(x), podendo ser aplicado o Teorema 1.
Desta forma:


Porém, como n é inteiro, podemos escrever f(n) em binômio de Newton na forma de uma série:


Para seguir com os cálculos é importante saber se f(n) é crescente ou decrescente, pois isso irá nos permitir concluir se existe o limite exponencial.
Sabemos que:


Agora, para verificar se é crescente ou decrescente, irei iniciar o estudo supondo que a função é crescente e assim, saber se isso é verdadeiro ou não. Se ela for crescente, então f(n) < f(n+1), ou seja:


Na etapa (3) acima, é possível verificar que o termos de dentro do somatório do lado esquerdo é negativo e portanto a desigualdade é verdadeira, o que garante que f(n) é crescente como suposto inicialmente.

Agora, um passo importante é saber se f(n) é limitado, ou seja, que existe um K tal que, para qualquer n, f(n) < K. Com isso, da Proposição 1, é possível garantir que f(n) converge.

Verificando se f(n) é limitada superiormente:


O somatório obtido acima é a soma de uma PG, que é facilmente calculado:


Logo, temos que f(n) é limitada superiormente e crescente, o que garante que o limite existe. O valor do limite não é possível ser calculado sem o uso de um software ou mesmo de recursos envolvendo derivada ou série de Taylor, que a meu entender são conteúdos que estão a frente destes aplicados aqui.

Porém, caso deseja-se calcular este limite, pode ser feito com o uso da regra de L'Hopital, por exemplo:


Substituindo a variável 1/x = y e após isso aplicando L'Hopital, temos:



Exercício Resolvido - Geometria analítica: Reta e elipse

Determine a equação da reta tangente à elipse de equações paramétricas:
x = 4*Cos(t)
y = 3*Sen(t)
no ponto correspondente ao valor paramétrico t = π/4. Identifique os vértices e os focos da elipse. Represente graficamente, num mesmo plano, a elipse e a reta tangente.

Solução:
Se a reta é tangente à elipse no ponto para t = π/4 então, a reta deve passar pelo ponto da elipse onde t = π/4 e a derivada da reta (inclinação) deve ser a mesma da derivada da elipse neste mesmo ponto.
Neste caso, temos que para t = π/4:

x = 4*Cos(π/4) = 2*√2
y = 3*Sen(π/4) = 1,5*√2

A derivada da elipse é facilmente calculada derivando a equação paramétrica com relação a t

x' = -4*Sen(t)
y' = 3*Cos(t)

Para t = π/4:

x' = -2*√2
y' = 1,5*√2

Assim:

dy/dx = y'/x' = -0,75

e esta é a inclinação da elipse e portanto da reta neste ponto.
Assim, a reta é dada por:

y = -0,75*x + b

Mas esta reta passa pelo ponto (2*√2 , 1,5*√2)
Assim:

1,5*√2 = -0,75*(2*√2) + b
b = 3*√2

A reta será:

y = -0,75*x + 3*√2


Os vértices da elipse podem ser determinados facilmente com a equação dela já que o centro desta elipse é o ponto (0,0). Com isso, os vértices encontram-se sobre os eixos, no caso, para os seguintes valores de t:

t = 0
t = π/2
t = π
t = 3π/2

Nestes valores de t, temos os seguintes pontos:
t = 0
x = 4, y = 0
t = π/2
x = 0, y = 3
t = π
x = -4, y = 0
t = 3π/2
x = 0, y = -3

Os focos podem ser determinados já que conhecemos os vértices. Como os vértices são dados por (±4,0) e (0,±3), temos que:

f² = 4² - 3² = 7
f = (±√7,0)




Exercício Resolvido - Geometria analítica: Ponto, Reta e Circunferência no plano.

Sejam A(-7,4) e B (5,-12) pontos no plano.
a)Encontre a inclinação da reta que contém A e B
b)Encontre uma equação da reta que passa por A e B.Quais as intersecções com os eixos ?.
c)Encontre o ponto médio do segmento AB.
d)Encontre o comprimento do segmento AB.
e)Encontre uma equação para a mediatriz de AB.
f)Encontre uma equação para a circunferência para o qual AB é um diâmetro.

Solução:

a) A inclinação da reta é dada pelo ângulo formado entre a reta e o eixo das abcissas (eixo x). Assim, temos que pensar na reta como um triângulo retângulo. Veja a figura a seguir:






Na figura acima, temos a reta que passa pelos pontos A e B e o triângulo retângulo que comentei anteriormente, formado pelos pontos A, B e C. Observe que o segmento de reta AC é paralelo ao eixo x e portanto, o ângulo formado pela reta e o eixo x é o mesmo formado pela reta e o segmento AC.
Porém, perceba que a reta é decrescente, ou seja, quanto maior o valor de x, menor o de y na reta. Assim, a inclinação é um ângulo no intervalo 90° < inclinação < 180°.
Bom, do desenho acima podemos perceber que o ângulo CÂB somado ao ângulo de inclinação da reta é 180°.

tg(a + b) = (tg(a) + tg(b))/(1 - tg(a)*tg(b))

Como, neste caso, a + b = 180° e sabendo que Tg(180°) = 0

(tg(a) + tg(b))/(1 - tg(a)*tg(b)) = 0
tg(a) + tg(b) = 0
tg(a) = -tg(b)

Assim, a tangente do ângulo CÂB é a mesma tangente do ângulo de inclinação da reta, porém com sinal trocado.
Podemos perceber que a tangente do ângulo CÂB é dada por:

tg(a) = BC/CA

Onde:

CA = 5 - (-7) = 12
BC = 4 - (-12) = 16
tg(a) = 16/12 = 4/3

Logo, o ângulo CÂB = ArcTg(4/3) = 53,13°
Assim, como:
CÂB + inclinação = 180°
Inclinação = 180° - 53,13° = 126,87°



b) A equação da reta pode ser obtida de forma mais simples. Temos que toda equação de reta num plano é da forma:

y = a*x + b

Como temos dois pontos que definem essa reta:

A(-7,4) e B(5,-12), então
4 = a*(-7) + b (Ponto A)
-12 = a*(5) + b (Ponto B)

Das equações acima, temos que:

a = -4/3
b = -16/3

Assim, a equação da reta é:

y = (-4/3)*x - 16/3



c) Para obter o ponto médio de um segmento, basta somar os pontos que limitam este segmento e dividir por dois, neste caso:

A = (-7,4)
B = (5,-12)
(A+B)/2 = ( -7 + 5 , -12 + 4) / 2 = (-2/2 , -8/2) = (-1,-4)
M = (-1,-4)

Na figura a seguir é possível verificar o ponto médio em vermelho:




d) Para o cálculo do comprimento AB vamos voltar ao triângulo retângulo que foi utilizado no exercício a). Vimos que podemos formar um triângulo retângulo, formado pelos pontos ABCA. Neste caso, o segmento AB é a hipotenusa do triângulo, com isso, como já calculamos o valor dos segmentos CA e BC no item a), temos:

AB² = CA² + BC²
AB² = 12² + 16²
AB² = 400
AB = 20.

Outro método mais direto de calcular este valor é com base nos pontos dados, veja como:

AB² = [ 5 - (-7) ]² + [ 4 - (-12) ]²

Onde cada um desses valores são as coordenadas dos pontos A e B. Com isso teremos que AB = 20, como calculado anteriormente.



e) Mediatriz é o conjunto de pontos que são equidistantes a dois pontos determinados. Neste caos é o conjunto de pontos equidistantes aos pontos A e B.

Assim, seja um ponto D(x,y) equidistante a A e B, desta forma, a distância de D para A é dada por:

dist(DA)² = [ x - (-7) ] ² + [ y - 4 ]² = x² + 14x + 49 + y² - 8y + 16
dist(DB)² = [ x - 5 ]² + [ y - (-12) ]² = x² - 10x + 25 + y² + 24 + 144

Como as distância devem ser iguais:

x² + 14x + 49 + y² - 8y + 16 = x² - 10x + 25 + y² + 24y + 144

Simplificando temos os termos iguais:

14x + 49 - 8y + 16 = -10x + 25 + 24y + 144
24x + 65 = 32y + 169
32y = 24x - 104
4y = 3x - 13
y = (3/4)x - 13/4
_________________________________________________________________________________
Veja também:

Exercício Resolvido - Geometria analítica: Reta e elipse

_________________________________________________________________________________

Podemos concluir que a mediatriz de dois pontos é uma reta, dada a equação obtida acima.




f) Se AB é um diâmetro do círculo, então o ponto médio de AB é o centro da circunferência. Como já temos todos estes dados, calculados anteriormente, sabemos que o comprimento AB = 20, logo o raio da circunferência é de 10. Como o centro dessa circunferência é (-1,-4) a equação é dada por:

[ x - (-1) ]² + [ y - (-4) ]² = 10²
[ x + 1 ]² + [ y + 4 ]² = 10²


Perceba que além do segmento AB, a mediatriz também passa pelo centro desta circunferência e portanto um segmento seu forma um diâmetro desta circunferência.


Exercício Resolvido - Limite

Calcule ou mostre que não existe, sem aplicar L'Hôpital e/ou aproximações polinomiais.

Solução:
Para resolver esses limites, um teorema deve ser enunciado:

Teorema 1Sejam as funções f,g: D →
Sejam as constantes a Є D’ e b1,b2 Є tais que limx→a f(x) = b1 limx→a g(x) = b2
Então:
a) limx→a (f + g)(x) = b1 + b2
b) limx→a (f*g)(x) = b1*b2
c) Se b2 ≠ 0  limx→a (f/g)(x) = b1/b2
Onde D’ são os pontos de acumulação do domínio de f e g.

a)

Fazendo uma substituição de variável u = sen(x)/cos(x) = tg(x) onde para x tendendo a zero, u também tende a zero, adotando o Teorema 1 e conhecendo o limite:
temos que:
Gráfico da função:

b) Para quem não percebeu (ou para quem não sabe ainda), esse limite é a derivada da função seno.
Percebam que no limite, x → a, ou seja, x é um pouco diferente de a, mas muito próximo de a. Assim, podemos dizer que x = a + h, sendo que no limite, h → 0.
Como a é uma constante, cos(a) e sen(a) também é constante e poderá sair de dentro do limite quando estiver multiplicando. 
Conhecendo o limx→0 sen(x)/x mencionado no exercício anterior, temos:
Mas:
Onde limh→0 sen(h)/h = 1 e limh→0 sen(h)/[cos(h)+1] = 0/2 = 0. Logo, 1*0 = 0. Portanto:
Assim, voltando ao exercício:
Gráfico da função para a = 0 em azul, a π/4 em vermelho e a = π/2 em preto:

c)Para resolver este exercício, devemos fatorar os polinômios que estão dentro da raiz:
1-x³ = (1-x)*(x² + x + 1)
x²-1 = (x-1)*(x+1)

Da divisão, o termo (x-1) pode ser simplificado, ficando:
Gráfico da função em azul e em vermelho uma reta horizontal passando pela raiz cúbica de -3/2.