Exercício Resolvido - Geometria analítica: Ponto, Reta e Circunferência no plano.

Sejam A(-7,4) e B (5,-12) pontos no plano.
a)Encontre a inclinação da reta que contém A e B
b)Encontre uma equação da reta que passa por A e B.Quais as intersecções com os eixos ?.
c)Encontre o ponto médio do segmento AB.
d)Encontre o comprimento do segmento AB.
e)Encontre uma equação para a mediatriz de AB.
f)Encontre uma equação para a circunferência para o qual AB é um diâmetro.

Solução:

a) A inclinação da reta é dada pelo ângulo formado entre a reta e o eixo das abcissas (eixo x). Assim, temos que pensar na reta como um triângulo retângulo. Veja a figura a seguir:






Na figura acima, temos a reta que passa pelos pontos A e B e o triângulo retângulo que comentei anteriormente, formado pelos pontos A, B e C. Observe que o segmento de reta AC é paralelo ao eixo x e portanto, o ângulo formado pela reta e o eixo x é o mesmo formado pela reta e o segmento AC.
Porém, perceba que a reta é decrescente, ou seja, quanto maior o valor de x, menor o de y na reta. Assim, a inclinação é um ângulo no intervalo 90° < inclinação < 180°.
Bom, do desenho acima podemos perceber que o ângulo CÂB somado ao ângulo de inclinação da reta é 180°.

tg(a + b) = (tg(a) + tg(b))/(1 - tg(a)*tg(b))

Como, neste caso, a + b = 180° e sabendo que Tg(180°) = 0

(tg(a) + tg(b))/(1 - tg(a)*tg(b)) = 0
tg(a) + tg(b) = 0
tg(a) = -tg(b)

Assim, a tangente do ângulo CÂB é a mesma tangente do ângulo de inclinação da reta, porém com sinal trocado.
Podemos perceber que a tangente do ângulo CÂB é dada por:

tg(a) = BC/CA

Onde:

CA = 5 - (-7) = 12
BC = 4 - (-12) = 16
tg(a) = 16/12 = 4/3

Logo, o ângulo CÂB = ArcTg(4/3) = 53,13°
Assim, como:
CÂB + inclinação = 180°
Inclinação = 180° - 53,13° = 126,87°



b) A equação da reta pode ser obtida de forma mais simples. Temos que toda equação de reta num plano é da forma:

y = a*x + b

Como temos dois pontos que definem essa reta:

A(-7,4) e B(5,-12), então
4 = a*(-7) + b (Ponto A)
-12 = a*(5) + b (Ponto B)

Das equações acima, temos que:

a = -4/3
b = -16/3

Assim, a equação da reta é:

y = (-4/3)*x - 16/3



c) Para obter o ponto médio de um segmento, basta somar os pontos que limitam este segmento e dividir por dois, neste caso:

A = (-7,4)
B = (5,-12)
(A+B)/2 = ( -7 + 5 , -12 + 4) / 2 = (-2/2 , -8/2) = (-1,-4)
M = (-1,-4)

Na figura a seguir é possível verificar o ponto médio em vermelho:




d) Para o cálculo do comprimento AB vamos voltar ao triângulo retângulo que foi utilizado no exercício a). Vimos que podemos formar um triângulo retângulo, formado pelos pontos ABCA. Neste caso, o segmento AB é a hipotenusa do triângulo, com isso, como já calculamos o valor dos segmentos CA e BC no item a), temos:

AB² = CA² + BC²
AB² = 12² + 16²
AB² = 400
AB = 20.

Outro método mais direto de calcular este valor é com base nos pontos dados, veja como:

AB² = [ 5 - (-7) ]² + [ 4 - (-12) ]²

Onde cada um desses valores são as coordenadas dos pontos A e B. Com isso teremos que AB = 20, como calculado anteriormente.



e) Mediatriz é o conjunto de pontos que são equidistantes a dois pontos determinados. Neste caos é o conjunto de pontos equidistantes aos pontos A e B.

Assim, seja um ponto D(x,y) equidistante a A e B, desta forma, a distância de D para A é dada por:

dist(DA)² = [ x - (-7) ] ² + [ y - 4 ]² = x² + 14x + 49 + y² - 8y + 16
dist(DB)² = [ x - 5 ]² + [ y - (-12) ]² = x² - 10x + 25 + y² + 24 + 144

Como as distância devem ser iguais:

x² + 14x + 49 + y² - 8y + 16 = x² - 10x + 25 + y² + 24y + 144

Simplificando temos os termos iguais:

14x + 49 - 8y + 16 = -10x + 25 + 24y + 144
24x + 65 = 32y + 169
32y = 24x - 104
4y = 3x - 13
y = (3/4)x - 13/4
_________________________________________________________________________________
Veja também:

Exercício Resolvido - Geometria analítica: Reta e elipse

_________________________________________________________________________________

Podemos concluir que a mediatriz de dois pontos é uma reta, dada a equação obtida acima.




f) Se AB é um diâmetro do círculo, então o ponto médio de AB é o centro da circunferência. Como já temos todos estes dados, calculados anteriormente, sabemos que o comprimento AB = 20, logo o raio da circunferência é de 10. Como o centro dessa circunferência é (-1,-4) a equação é dada por:

[ x - (-1) ]² + [ y - (-4) ]² = 10²
[ x + 1 ]² + [ y + 4 ]² = 10²


Perceba que além do segmento AB, a mediatriz também passa pelo centro desta circunferência e portanto um segmento seu forma um diâmetro desta circunferência.


0 comentários:

Postar um comentário