Exercício Resolvido - Maximização de volume: Multiplicadores de Lagrange

Cálculo do máximo e do mínimo volume de uma caixa utilizando multiplicadores de Lagrange

Calcule o maior e o menor volume de uma caixa retangular cuja área deve ser de 1500 cm² e a soma das arestas 200 cm.

Solução:

Como se trata de um exercício de obtenção do máximo e do mínimo de uma função segundo algumas condições, o uso da teoria de multiplicadores de Lagrange se torna adequado.

Neste caso, teremos uma equação a ser maximizada e minimizada que é o volume. Chamando de a, b e c as arestas da caixa temos:


As condições que devemos obedecer são:

Condição de aresta:


Condição de área:


Com isso podemos construir a função de Lagrange:


Assim, as soluções que maximizam e minimizam o volume segundo as condições de área e de aresta são dadas pela solução do seguinte sistema:



Disso, temos que:

Da primeira equação:


Da segunda equação:


Aqui já podemos concluir que a = b

Veja também:
Exercício Resolvido - Multiplicadores de Lagrange

Utilizando este resultado nas duas últimas equações temos:

c = 50 - 2a
a² + 2ac = 750

Substituindo:

a² + 2a*(50 - 2a) = 750
3a² - 100a + 750 = 0

Neste último caso, temos uma equação do segundo grau em a, que tem como raízes:


Assim, como b = a e c = 50 - 2a temos os valores das arestas:


Portanto:


Perceba que a terceira equação não foi utilizada, nem mesmo a relação de a e b com os multiplicadores de Lagrange λ e λ de onde concluímos que a = b. O uso destas equações iria nos fornecer os valores dos multiplicadores, o que não nos interessa a não ser que seja necessário. Como não foi, não calculá-los, simplifica bastante o problema.

Abaixo, veja o gráfico tridimensional de: Volume x a x b onde c foi substituído por c = 50 - a - b.
Em azul, a linha que estabelece a condição de área (ab + ac + bc = 750) e em verde, os pontos onde a área é máxima e mínima segundo as condições impostas:


Máximo e Mínimo

Veja apenas a curva em azul e os pontos:

Máximo e Mínimo



Exercício Resolvido - Movimento circular uniforme: Vestibular UERJ 2011

Exercício de movimento circular uniforme do vestibular UERJ 2011

Um ciclista pedala uma bicicleta em trajetória circular de modo que as direções dos deslocamentos das rodas mantêm sempre um ângulo de 60º. O diâmetro da roda traseira dessa bicicleta é igual à
metade do diâmetro de sua roda dianteira.
O esquema a seguir mostra a bicicleta vista de cima em um dado instante do percurso.

Questão de Vestibular
Admita que, para uma volta completa da bicicleta, N1 é o número de voltas dadas pela roda traseira e N2 o número de voltas dadas pela roda dianteira em torno de seus respectivos eixos de rotação.
A razão N1/N2 é igual a:
(A) 1
(B) 2
(C) 3
(D) 4

Solução:

Como as duas rodas percorrem trajetos circulares, conforme mostrado na figura em tracejado, então elas desenvolvem um movimento circular uniforme.

É muito importante lembrar que no movimento circular uniforme a velocidade é SEMPRE tangente à curva. Veja na figura abaixo:

Movimento Circular Uniforme

A partir deste ponto o problema passa a ser de geometria plana.

Veja no desenho, em azul os vetores velocidade de cada uma das rodas (perceba que eles são tangentes às circunferências) e em vermelho a linha que liga o ponto que as rodas tocam o chão (origem do vetor velocidade) ao centro das circunferências.

Esta linhas SEMPRE formam 90º entre si, ou seja, TODA RETA TANGENTE A UMA CIRCUNFERÊNCIA FORMA 90º COM A RETA QUE LIGA O PONTO DE TANGÊNCIA AO CENTRO DA CIRCUNFERÊNCIA:

Assim temos:

Reta tangente à circunferência

Seja r o raio da circunferência percorrida pela roda traseira, e R pela roda dianteira. Além disso, alguns ângulos das figura podem ser determinados:

reta tangente à Circunferência

Portanto, a relação r/R = Cos(60º) = 1/2  2r = R

Assim, quando a roda dianteira percorre a circunferência grande uma vez a distância percorrida por ela é:

D = 2 π R = 2 π (2 r) = 4 π r

Enquanto isso, a roda traseira percorre a circunferência pequena, o que dá uma distância:

d = 2 π r

O número de voltas dado pelas rodas vai depender do raio de cada uma. Sendo RD o raio da roda dianteira e RT da traseira, sabe-se do exercício que RD = 2 RT. O número de voltas dado pela roda dianteira será de:

N1 = (2 π RD) / D = (2 π RD) / (4 π r) = (4 π RT) / (4 π r) = R/ r

Para a roda traseira:

N2 = (2 π RT) / d = (2 π RT) / (2 π r) = R/ r

Logo, N1/N2 = 1, Letra (A)