Exercício Resolvido - Prova CORSAN 2014: Probabilidade

Das dez torneiras da rede de abastecimento de um determinado bairro, três estão com defeito. Se a equipe de manutenção escolher, aleatoriamente, duas torneiras para trocar, a probabilidade de se encontrar pelo menos uma com defeito é de, aproximadamente:

a) 38% 
b) 40% 
c) 45% 
d) 48% 
e) 53%

Solução:

Para resolver esta questão eu irei usar o conceito de que a probabilidade de algo ocorrer é o número de possibilidades dividido pelo universo.
Neste caso temos 10 torneiras e existem X formas diferentes de agrupá-las duas a duas. Este é o nosso universo.

X = 10!/(2!*8!) = 45

Dessas 45 formas distintas de se agrupar 10 torneiras duas a duas, existe uma quantidade de pares formada apenas pelas torneiras boas. Estas são 7, então o número de pares formados apenas por elas é Y.

Y = 7!/(2!*5!) = 21

Logo, dos 45 pares formados pelas torneiras, certamente 21 deles não são formados por torneiras ruins. Com isso, 45 - 21 = 24 são formados por pelo menos uma ruim.

Assim, a probabilidade será:

P = 24/45 = 53,3%, letra e)



Exercício Resolvido - Trigonometria: Relações trigonométricas

Considerando-se a expressão trigonométrica x = 1 + Cos(30°), um dos possíveis produtos que a representam é igual a:

a) 2 cos² 15º 
b) 4 cos² 15º 
c) 2 sen² 30º 
d) 2 cos² 30º 
e) 4 sen² 15º

Solução:
cos(a + b) = cos(a)*cos(b) - sen(a)*sen(b)

Como 30° = 15° + 15°, podemos escrever:

Cos(30°) = Cos(15° + 15°) = Cos(15°)*Cos(15°) - Sen(15°)*Sen(15°) = Cos²(15°) - Sen²(15°)

Ainda, das relações trigonométricas, temos que:

Cos²(a) + Sen²(a) = 1, logo

Sen²(a) = 1 - Cos²(a)

Ou seja:

Sen²(15°) = 1 - Cos²(15°)

Substituindo:

Cos(30°) = Cos²(15°) - [1 - Cos²(15°)]

Cos(30°) = Cos²(15°) - 1 + Cos²(15°)

Cos(30°) = 2*Cos²(15°) - 1

Somando 1 de ambos os lados:

1 + Cos(30°) = 1 + 2*Cos²(15°) - 1

1 + Cos(30°) = 2*Cos²(15°) 

alternativa a)


Exercício Resolvido - Base de um espaço vetorial: Independência linear

Seja E(u,v,x) uma base e F(a,b,c) tal que u = 2a + 2b, v = 2a - b, w = a + b - 5c. Prove que F é base.

Solução:
Primeiro, precisamos saber o que é uma base?
Sem muitos critérios matemáticos, um conjunto de vetores B é chamado de base de um espaço vetorial E se, a partir da combinação linear dos vetores que formam B pudermos formar qualquer vetor do espaço E e se os vetores que formam B forem linearmente independentes.
Além disso, temos que qualquer base de um espaço vetorial tem o número de vetores iguais à dimensão deste espaço.


Por exemplo:
Uma base para o conjunto dos reais (R¹) pode ser o número 1, pois a partir dele podemos formar qualquer número real multiplicando 1 por um coeficiente a1 real. -> 5,4 = 5,4*1
Uma base para o conjunto R² pode ser B = {(1,0) , (0,1)}, pois a partir destes vetores podemos formar qualquer vetor do espaço R² multiplicando pelos coeficientes reais a1 e a2. -> (2,7) = 2*(1,0) + 7*(0,1)
Nestes dois casos temos que R¹ tem dimensão 1, e R² tem dimensão 2.

Neste caso, o primeiro critério é claramente satisfeito por F, já que F tem 3 vetores, são eles:
'a', 'b' e 'c'.

O que resta saber é se 'a', 'b' e 'c' são linearmente independentes.
Aqui, precisamos saber o que é ser Linearmente Independente.
Um conjunto de vetores (v1,v2,v3,...,vn) é linearmente independente se para quaisquer coeficientes reais (a1,a2,a3,...,an), não todos nulo, temos:

a1*v1 + a2*v2 + a3*v3 + ... + an*vn ≠ 0

Agora podemos voltar ao exercício.

Do exercício temos que E(u,v,w) é uma base.

Sabendo que:
u = 2a + 2b
v = 2a - b
w = a + b - 5c

Assim, manipulando temos:
a = u/2 -b
a = (v+b)/2
a = w - b + 5c


u - 2b = v + b
b = (u - v)/3

a = u/2 - u/3 + v/3
a = (u + 2v)/6

c = (a + b - w)/5
c = [(u + 2v)/6 + (u - v)/3 - w]/5
c = (u/2 - w)/5

Se F não é um espaço vetorial:

a1*a + a2*b + a3*c = 0, para algum valor de a1, a2, a3 reais desde que não sejam todos nulos. Porém, se a única solução é a de serem todos nulos, então F é um espaço vetorial.

a1*(u + 2v)/6 + a2*(u - v)/3 + a3*(u/2 - w)/5 = 0
u*(a1/6 + a2/3 + a3/10) + v*(a1/3 - a2/3) - w*(a3/5) = 0

Para isso ser verdade, como (u,v,w) são Linearmente Independentes, esta igualdade só é válida se:

a1/6 + a2/3 + a3/10 = 0
a1/3 - a2/3 = 0, desta equação temos que a1 = a2.
a3/5 = 0, desta temos que a3 = 0

Substituindo os resultados na primeira equação temos:
a1/6 + a1/3 = 0
O que só é válido se a1 = 0.

Logo, a equação a1*a + a2*b + a3*c = 0 só é verdade se a1 = a2 = a3 = 0. Logo, F é Linearmente Independente e portanto uma base.


Exercício Resolvido - Potenciação

Um inteiro é chamado formidável se ele pode ser escrito como uma soma de potências distintas de 4 e é dito bem sucedido se ele pode ser escrito como uma soma de duas potências distintas de 6. O número de maneiras de escrevemos 2005 como a soma de um número formidável com um número bem sucedido é: 

a) 0 
b) 1
c) 2
d) 3

e) mais de 3

Solução:

Uma potência de 4 é qualquer número tal que pode ser escrito na forma: 4


Assim, vamos verificar as potências de 4 menores que 2005, isso irá facilitar a resolução do exercício:

4° = 1
4¹ = 4
4² = 16
4³ = 64
4⁴ = 256
4⁵ = 1024

A próxima potência de 4 (4⁶) é maior que 2005, portanto não serve.

Agora escreveremos as potências de 6:
6° = 1
6¹ = 6
6² = 36
6³ = 216
6⁴ = 1296

A próxima potência de 6 (6) é maior que 2005, portanto também não serve.

Agora resta verificar a combinação desses números que resulta em 2005. Porém como 2005 é ímpar, certamente teremos ou 4° = 1 ou 6° = 1 na soma.

É importante perceber que neste exercício temos a liberdade de pegar quantas potências de 4 queremos (desde que sejam distintas), porém as potências de 6 devem ser apenas duas.

Desta forma, pegaremos os maiores valores que são potências de 6 e todos os outros que são potência de 4, desde que a soma não seja superior a 2005.
1296 + 216 + 256 + 64 + 16 + 4 + 1 = 1853.

Desta forma, não existe qualquer combinação destes valores que possam resultar em 2005 pois sob estas condições o maior valor que podemos ter que não passa 2005 é 1853.

Portanto, a resposta correta é a)


Exercício Resolvido - MRU e MRUV, Mosca e trem.

Um trem esta numa estação A, inicialmente em repouso e parte com aceleração de 0,3 m/s².
Numa estação B parte do repouso outro trem, com aceleração de 0,1 m/s².
Pousada em seu nariz há uma mosca que neste mesmo instante passa a voar retilineamente em direção ao trem B com velocidade constante de 15 m/s.

Ambos os trens deslocam-se um de encontro ao outro e a distância inicial deles é de 500 m.
A mosca que inicialmente estava no nariz do trem A voa e encosta no B. Após isso, sem alterar sua velocidade, retorna e encosta no trem A, repetindo este procedimento até que os trens se chocam e a mosca morre esmagada.

a) Qual o tempo que levará até que a mosca morra esmagada?
b) Qual o deslocamento de cada um dos trens?
c) Qual a distância percorrida pela mosca?

Solução

a) A equação que descreve a posição dos trens é a equação do MRUV (Movimento Retilíneo Uniformemente Variado), já que ambos possuem aceleração constante.

SA = SoA + VoA*t + aA*t²/2
SB = SoB + VoB*t + aB*t²/2

Considerando que o trem A desloca-se em uma direção positiva (ou seja, com isso o deslocamento de B será negativo, já que os trens se deslocam em direções opostas) e que a sua posição inicial é a origem, temos que SoA = 0 e que SoB = 500 m. Como ambos os trens partem do repouso temos que suas equações da posição de cada trem ficam:

SA = aA*t²/2
SB = 500 + aB*t²/2

Como o trem B se desloca numa direção negativa, sua aceleração é negativa, aB = -0,1 m/s², logo:

SA = 0,3*t²/2
SB = 500 - 0,1*t²/2

Quando os trens se chocam, ambos estão no mesmo ponto, logo SA = SB. E com isso podemos calcular o tempo que leva até eles se chocarem:

SA = SB
0,3*t²/2 = 500 - 0,1*t²/2
Multiplicando tudo por 2
0,3*t² = 1000 - 0,1*t²
Com isso
0,4*t² = 1000
t² = 2500
t = 50 s

b) Como o tempo que os trens levam para se chocarem é de 50 s, basta substituir este tempo nas equações da posição dos trens e ver quanto eles se deslocaram. Para o trem A:

SA = 0,3*t²/2
SA = 0,3*50²/2
SA = 375 m
Logo o deslocamento do trem A é de 375 m.

Para o trem B:

SB = 500 - 0,1*t²/2
SB = 500 - 0,1*50²/2
SB = 500 - 125
SB = 375 m

Este resultado não é o quanto o trem B se DESLOCOU, mas sim a POSIÇÃO do trem B após os 50 s. Como deveria ser, veja que o resultado é o mesmo do trem A, o que é bastante óbvio já que eles se chocam e para isso precisam estar na mesma posição. Para saber o deslocamento do trem B, basta lembrar que ele partiu do ponto SoB = 500 m. Se no fim ele estava no ponto 375 m, então ele se deslocou:

500 - 375 = 125 m
Logo, o deslocamento do trem B é de 125 m.

c) Para o cálculo de quanto a mosca percorreu basta usar as equações de MRU (Movimento Retilíneo Uniforme) pois a velocidade da mosca não se altera em momento nenhum.

SMOSCA = VMOSCA*t

Como já sabemos o tempo (t = 50 s) e a velocidade dela é de 15 m/s:

SMOSCA = 15*50 = 750 m
Logo, a distância percorrida pela mosca é de 750 m.

Comentários:
A distância percorrida pela mosca é maior que a distância entre os trens, o que parece ser bem estranho. Porém lembre-se que a mosca fica "indo e voltando" de um trem para o outro e por isso acaba percorrendo uma distância maior que os 500 m.