Exercício resolvido - Continuidade de função

Considere a função real definida por:
Para qual valor de k a função é contínua?

Solução:
Inicialmente, devemos definir o domínio dessa função e como sabemos que não podemos ter valores negativos dentro das raízes temos que:

1 + x > 0, logo, x > -1
1 - x > 0, logo, x < 1

-1 < x < 1

Ainda, não podemos ter denominador nulo, logo:
1 + x ≠ 1 - x
2x ≠ 0
≠ 0. 


O que é respeitado quando dizemos que para x = 0, f(x) = k.



Agora, para saber a continuidade devemos fazer o limite da função f(x) para x tendendo a zero.

Para isso:




Simplificando o x:




Logo, para que f(x) seja contínua, k = 1.




Exercício resolvido - Quantidade de movimento

Dois objetos, A e B, movendo-se sem atrito sobre uma reta horizontal, estão em interação. A quantidade de movimento de A é QDMA = Po - bt, onde Po e b são constantes e t é o tempo. Determine a quantidade de movimento de B como função do tempo quando a) B está inicialmente em repouso e b) a quantidade de movimento inicial de B é igual a -Po

Solução:
O fato de os blocos estarem interagindo significa, quando falamos de quantidade de movimento, que a quantidade de movimento de ambos permanece constante, já que não há força externa (atrito, por exemplo) agindo nos blocos.
Com isso:

a)
Para t = 0, a quantidade de movimento de A é Po e a quantidade de movimento de B é zero, pois B esta em repouso. Assim, a quantidade de movimento total será:
QDMT = QDMA + QDMB =  Po + 0 = Po

Para t = t, teremos que a quantidade de movimento total não muda, pois como já foi dito, não há força externa atuando no sistema. Assim:
QDMA = Po - bt
QDMB = QDMB
Sabemos que:
QDMA + QDMB = Po
(Po - bt) + (QDMB) = Po
QDMB = bt

b)
De forma análoga:
Para t = 0:
QDMA = Po
QDMB = -Po
A quantidade de movimento total será:
QDMT = Po - Po = 0

Para t = t
QDMA = Po - bt
QDMB = QDMB
Sabemos que:
QDMA + QDMB = 0
(Po - bt) + (QDMB) = 0
QDMB = bt - Po


Exercício Resolvido - Resistência equivalente

Cálculo da resistência equivalente

Calcule a resistência equivalente entre os pontos A e B:
Associação mista
Solução:
Como no circuito existem alguns trechos em curto circuito, facilita a visualização se transformarmos esses curtos em pontos.

Curto elétrico
Temos curtos circuito entre os pontos:
CH, DG e EF.
O resistor elétrico DE e o resistor FG estão em série, formando uma resistência equivalente de 2 Ω. Porém esta resistência equivalente esta em paralelo com o curto DG, logo é como se ela não existisse. Assim, o novo circuito ficaria:

Resistencia equivalente
Transformando os curtos circuitos CH e DG em pontos teremos:

Resistencia em paralelo
Agora, é fácil perceber que há uma associação de resistores em paralelo para os resistores de 8 Ω (AC e AH), o mesmo acontece com os resistores de 12 Ω (HD e HG).
Assim, no trecho AH temos como resistência equivalente 4 Ω, e no trecho HG a resistência equivalente é de 6 Ω.

Resistencia em serie
Veja também:
5 Exercícios Resolvidos de Resistência Equivalente Para Você Fixar o AssuntoExercício Resolvido - Resistência Equivalente de circuito misto
Exercício Resolvido - Resistência Equivalente: VESTIBULAR UERJ 2011
Quando a ddp numa ponte de Wheatstone é zero ?

Assim, há a associação de resistores em série para HG e GB, tendo como resistência equivalente 12 Ω. Mas esta resistência equivalente de 12 Ω esta associada em paralelo com o resistor HB.

Exercício de resistência em paralelo

Assim, a resistência equivalente entre os pontos HB é de 6 Ω.

Exercício de resistência em série

Logo, a resistência total entre os pontos AB é de 4 + 6 = 10 Ω

Espero que este exercício contribua para os leitores. Qualquer dúvida deixe nos comentários.


Área da elipse usando apenas conhecimentos de cálculo I

A análise inicial é muito parecida com a feita no exercício anterior, assim como o raciocínio para a obtenção do resultado, o que irá mudar neste caso é o "pedaço de área" que vamos pegar. Ele, assim como feito antes, deve ser infinitamente pequeno.
A área infinitesimal adotada será conforme a figura a seguir:
Cálculo da área da Elipse

Como pode ser observado, a área vermelha vale:

Da equação da elipse, dada por:
temos que:
Como x1 é o extremo do intervalo (dependente de y como pode ser observado) temos que:
Agora, para obter a área total da elipse, basta integrar dos dois lados da igualdade. Os limites de integração serão -b < y < b (no caso da figura acima -1 < y < 1, pois b² = 1). Fazendo isso temos:
Esta integral é a mesma calculada no exercício anterior (http://brawnexercicios.blogspot.com.br/2013/01/deducao-da-area-de-uma-elipse.html), mudando apenas algumas letras. Desta forma:



Dedução da área de uma elipse

Supondo uma elipse, conforme figura a seguir:
Como pode ser observado, pelo pontos onde a elipse corta os eixos, esta elipse tem equação:
Porém no caso deste exercício, deseja-se que a elipse seja genérica, assim, adotaremos como sendo a equação:


Assim, tomando um "pedaço da área" muito pequeno, chamado de dA, conforme mostrado na figura a seguir.
podemos observar que a área dA vale dx*dy. Assim, e somarmos todas as pequenas áreas dA que existem dentro da elipse, teremos a área total dela, ou seja, devemos, neste caso, integrar para obter a área que desejamos.
Neste ponto, o que precisamos definir são os limites de integração.
Assim, pode-se perceber que:
Da equação tiramos os limites de y:
Assim, integrando dy temos:

Fazendo uma substituição de variável, onde x = a*Sen(u), temos, dx = a*Cos(u)*du e para definir os novos limites da integração, procedemos da seguinte forma:
Para x = a, u = π/2
Para x = -a, u = -π/2 
Logo:

Mas como 1 - Sen²(u) = Cos²(u).
A integração de Cos² pode ser feita sabendo-se que Cos² = 1 - Sen², assim:
Porém, com este método não é possível obter a solução, já que não conhecemos o valor de integral de Sen². Para isso, devemos utilizar o método da integração por partes de Cos² da seguinte forma:

f(u) = Cos(u)
g ' (u) = Cos(u)du
f ' (u) = -Sen(u)du
g(u) = Sen(u)

Porém, como Cos(π/2) = Cos(-π/2) = 0, constatamos que:

Logo, do que foi obtido anteriormente, quando integramos substituindo Cos² por 1 - Sen², temos que:
Obtendo, finalmente: