Exercício Resolvido - Resistência equivalente

Cálculo da resistência equivalente

Calcule a resistência equivalente entre os pontos A e B:
Associação mista
Solução:
Como no circuito existem alguns trechos em curto circuito, facilita a visualização se transformarmos esses curtos em pontos.

Curto elétrico
Temos curtos circuito entre os pontos:
CH, DG e EF.
O resistor elétrico DE e o resistor FG estão em série, formando uma resistência equivalente de 2 Ω. Porém esta resistência equivalente esta em paralelo com o curto DG, logo é como se ela não existisse. Assim, o novo circuito ficaria:

Resistencia equivalente
Transformando os curtos circuitos CH e DG em pontos teremos:

Resistencia em paralelo
Agora, é fácil perceber que há uma associação de resistores em paralelo para os resistores de 8 Ω (AC e AH), o mesmo acontece com os resistores de 12 Ω (HD e HG).
Assim, no trecho AH temos como resistência equivalente 4 Ω, e no trecho HG a resistência equivalente é de 6 Ω.

Resistencia em serie
Veja também:
5 Exercícios Resolvidos de Resistência Equivalente Para Você Fixar o AssuntoExercício Resolvido - Resistência Equivalente de circuito misto
Exercício Resolvido - Resistência Equivalente: VESTIBULAR UERJ 2011
Quando a ddp numa ponte de Wheatstone é zero ?

Assim, há a associação de resistores em série para HG e GB, tendo como resistência equivalente 12 Ω. Mas esta resistência equivalente de 12 Ω esta associada em paralelo com o resistor HB.

Exercício de resistência em paralelo

Assim, a resistência equivalente entre os pontos HB é de 6 Ω.

Exercício de resistência em série

Logo, a resistência total entre os pontos AB é de 4 + 6 = 10 Ω

Espero que este exercício contribua para os leitores. Qualquer dúvida deixe nos comentários.


Área da elipse usando apenas conhecimentos de cálculo I

A análise inicial é muito parecida com a feita no exercício anterior, assim como o raciocínio para a obtenção do resultado, o que irá mudar neste caso é o "pedaço de área" que vamos pegar. Ele, assim como feito antes, deve ser infinitamente pequeno.
A área infinitesimal adotada será conforme a figura a seguir:
Cálculo da área da Elipse

Como pode ser observado, a área vermelha vale:

Da equação da elipse, dada por:
temos que:
Como x1 é o extremo do intervalo (dependente de y como pode ser observado) temos que:
Agora, para obter a área total da elipse, basta integrar dos dois lados da igualdade. Os limites de integração serão -b < y < b (no caso da figura acima -1 < y < 1, pois b² = 1). Fazendo isso temos:
Esta integral é a mesma calculada no exercício anterior (http://brawnexercicios.blogspot.com.br/2013/01/deducao-da-area-de-uma-elipse.html), mudando apenas algumas letras. Desta forma:



Dedução da área de uma elipse

Supondo uma elipse, conforme figura a seguir:
Como pode ser observado, pelo pontos onde a elipse corta os eixos, esta elipse tem equação:
Porém no caso deste exercício, deseja-se que a elipse seja genérica, assim, adotaremos como sendo a equação:


Assim, tomando um "pedaço da área" muito pequeno, chamado de dA, conforme mostrado na figura a seguir.
podemos observar que a área dA vale dx*dy. Assim, e somarmos todas as pequenas áreas dA que existem dentro da elipse, teremos a área total dela, ou seja, devemos, neste caso, integrar para obter a área que desejamos.
Neste ponto, o que precisamos definir são os limites de integração.
Assim, pode-se perceber que:
Da equação tiramos os limites de y:
Assim, integrando dy temos:

Fazendo uma substituição de variável, onde x = a*Sen(u), temos, dx = a*Cos(u)*du e para definir os novos limites da integração, procedemos da seguinte forma:
Para x = a, u = π/2
Para x = -a, u = -π/2 
Logo:

Mas como 1 - Sen²(u) = Cos²(u).
A integração de Cos² pode ser feita sabendo-se que Cos² = 1 - Sen², assim:
Porém, com este método não é possível obter a solução, já que não conhecemos o valor de integral de Sen². Para isso, devemos utilizar o método da integração por partes de Cos² da seguinte forma:

f(u) = Cos(u)
g ' (u) = Cos(u)du
f ' (u) = -Sen(u)du
g(u) = Sen(u)

Porém, como Cos(π/2) = Cos(-π/2) = 0, constatamos que:

Logo, do que foi obtido anteriormente, quando integramos substituindo Cos² por 1 - Sen², temos que:
Obtendo, finalmente:



Exercício Resolvido - Fatoração

Fatore a expressão abaixo:
a - 18a² + 81

Solução:
Para facilitar, vou adotar as seguintes substituições:
a⁴ = c²
Assim:
c² - 18c + 81 = c² - 2*(9c) + 9² = (c – 9)² = (a² - 9)²
Mas a² - 9 é uma diferença de dois quadrados:
a² - 9 = (a – 3)(a + 3)
Tendo, portanto:
(a² - 9)² = [(a – 3)(a + 3)]²


Exercícios Resolvidos - Fatoração

Fatore as expressões abaixo:
a) a⁴ - 1
b) a⁶ - 1

Solução:
a)
Aplicando fatoração de diferença de quadrados:
a⁴ - 1 = [(a²)² - 1²]
[(a²)² - 1²] = (a² - 1)(a² + 1)
Perceba que a² - 1 é uma diferença de quadrados também.
(a² - 1)(a² + 1) = (a - 1)(a + 1)(a² + 1)

b)
Aplicando diferença de quadrados:
a⁶ - 1 = [(a³)² - 1²]
[(a³)² - 1²] = (a³ - 1)(a³ + 1)
Agora temos a multiplicação de dois polinômios do 3º grau. Sabe-se que, todo polinômio de grau ímpar possui, pelo menos, uma raiz real, ou seja, pode ser fatorado. Para isso devemos achar as raízes dos polinômios:

Raízes de a³ - 1:
a³ - 1 = 0
a³ = 1
a = 1, a = (-1/2) + (√3/2) i (complexa, não interessa) e a = (-1/2) - (√3/2) i (complexa, não interessa)
Logo:
a³ - 1 = (a-1)(a² + A*a + B)
a³ - 1 = a³ + A*a² + B*a - a² - A*a - B
a³ - 1 = a³ + a²*(A - 1) + a*(B - A) - B
Assim:
A - 1 = 0
A = 1
B - A = 0
B = A = 1

Desta forma:
a³ - 1 = (a-1)(a² + a + 1)

Raízes de a³ + 1:
a³ + 1 = 0
a³ = -1
a = -1, a = (1/2) + (√3/2) i e a = (1/2) - (√3/2) i

Assim:
a³ + 1 = (a+1)(a² + A*a + B)
a³ + 1 = a³ + a²*(A + 1) + a*(A + B) + B
A + 1 = 0
A = -1
A + B = 0
B = -A = 1
a³ + 1 = (a + 1)(a² - a + 1)

Por fim:
a⁶ - 1 = (a³ - 1)(a³ + 1) = (a-1)(a² + a + 1)(a+1)(a² - a + 1)