Exercício Resolvido - Probabilidade de ninguém pegar seu próprio nome em um amigo secreto

Numa brincadeira de amigo secreto, qual a probabilidade de ninguém tirar o próprio nome quando o número de participantes tende ao infinito? 

Solução:
Este exercício parece ser simples mas é muito complicado.
Vou tentar explicar a forma como fiz o mais detalhado possível, porém o leitor deve estar bem atento a cada passo.

Inicialmente, vamos deduzir o universo de possibilidades.

Não é difícil perceber que o universo é de n! para n participantes, pois, o primeiro a sortear tem 'n' nomes para retirar. O segundo terá '(n-1)'. O terceiro, '(n-2)'... Logo, o número de possibilidades é:

n*(n-1)*(n-2)*...*1 = n!

Dessas possibilidades, vamos procurar quais são favoráveis, e da divisão das possibilidades favoráveis pelo número total temos a probabilidade.

Vou chamar de Prob(n) = [P(n) / n!] a probabilidade solicitada. Ou seja, P(n) é o número de possibilidades favoráveis

Vamos lá. Um estudo específico rápido:
Se fosse 1 participante, a probabilidade seria 0%.

Se fossem 2, teríamos que o 1º não poderia pegar seu nome. Como o universo de possibilidades é 2 e apenas uma delas satisfaz, e probabilidade aqui seria 1/2 = 0,5

Se fossem 3, temos que pensar da seguinte forma para saber o universo de possibilidades:
Se o primeiro tirar seu nome, já não nos serve mais. Como este caso tem 2 possibilidades (a de o segundo e o terceiro também tirarem seus nomes, e a de o 2° tirar o nome do 3° e o 3° tirar o do 2°), resta verificar os outros casos;
Se o 1° tirar o nome do 2°:
Pode o 2° tirar o do 1° e o 3° o dele mesmo -> não serve;
Pode o 2° tirar o do 3° e o 3° o do 1° -> OK
Se o 1° tirar o do 3°, ocorre o mesmo, ou seja, das 2 possibilidades, onde uma é válida.
Assim, neste caso (3 participantes), o universo de possibilidades é 3*2*1 = 6, e as válidas são 2. Temos 2/6 = 1/3 a probabilidade.

Perceba que existem dois casos. Um é o primeiro pegar o seu próprio nome. E este não nos serve. O outro é ele pegar o nome de outro participante. Assim, restará o nome dele e de mais um. Supondo que o participante que o primeiro pegou o nome, pegar o nome do primeiro (ou seja, um pega o nome do outro), resta a situação de apenas um participante, ou seja, o participante que não sorteou só poderá pegar o próprio nome, que é o caso de se só existisse um participante.

Vamos analisar como seria com 4 participantes, o pensamento é análogo ao se fossem 3:
Se o 1° tirar seu nome, os outros casos não nos serve. Ou seja, temos 3! = 6 possibilidades que não servem.
Se o 1° tirar o nome do 2°:
O 2° tira o do 1° o 3° tira o próprio e o 4° o próprio -> Não serve
O 2º tira o do 1°, o 3° o do 4° o 4° o do 3º -> OK
O 2° tira o do 3°, o 3° o do 1º o 4º o próprio -> não serve
O 2° tira o do 3°, o 3° o do 4º, o 4º o do 1º -> OK
O 2° tira o do 4°, o 3º o próprio, o 4° o do 1º -> Não serve
O 2° tira o do 4º, o 3º o do 1º, o 4º o do 3° -> Ok
Total de 3 possibilidades neste caso.
Como o 1º pode ainda tirar o do 3° e do 4°, e nesses casos teremos a mesma situação acima (3 favoráveis em cada), são 9 as possibilidades satisfatórias. 9/24 = 3/8.

Mais uma vez, o que foi observado no caso de 3 participantes, ocorreu. Veja que aqui existe também a possibilidade do 1º tirar o seu próprio nome (que não serve) e de ele tirar o nome que outro participante. Como são 4 participantes, as possibilidades do 1º tirar o nome de outro são 3. Digamos que ele pegue o nome de outro participante, chamado de B. Neste caso, se o participante B tirar o nome do 1º, vão restar 2 nomes e dois participantes. Porém, como no caso de existirem apenas 2 no jogo do amigo secreto, os dois participantes que restaram tem os seus nomes a serem sorteados. Caso o B não pegue o nome do 1º, e pegue o nome de um jogador C. Segue a lógica: se o C pegar o nome do 1º, resta um jogador e um nome (caso do jogo de apenas um participante, já que o nome que sobrou é exatamente o nome do jogador que não sorteou), se ele pegar o nome de um participante D ...


Agora, vou fazer o mesmo que fiz acima, porém de forma genérica, para n participantes.

Já foi visto que o universo de possibilidades é de n!.

Neste caso, para n participantes, temos:
Se o 1° pegar seu nome. já não serve mais -> (n-1)! casos descartados
Se o 1º pegar o nome de outro participante (participante X) [ (n-1) possibilidades ]
Se X pegar o nome do 1º (1 possibilidade) restam (n-2) participantes com seus próprios (n-2) nomes. Neste caso, a probabilidade dos casos favoráveis será P(n-2), já que os nomes não sorteados são exatamente o dos participantes que restaram.

Mas se X pegar o nome de um terceiro (Y) (n-2 possibilidades) obtém-se os mesmos 2 casos:
Y pegar o nome do 1º (1 possibilidade), restando (n-3) participantes e seus (n-3) nomes. P(n-3)
Y pegar outro (Z) (n-3 possibilidades):
Z pegar o nome do 1º (1 possibilidade): P(n-4)
.......
E assim vai.
Assim, teremos que:

P(n) = (n-1)*[P(n-2) + (n-2)*[P(n-3) + (n-3)*[P(n-4) + (n-4)*[P(n-5) + ... + 3*[P(2) + 2*[P(1)]]]...]]]
Da igualdade acima, temos:
P(n-1) = (n-2)*[P(n-3) + (n-3)*[P(n-4) + ... + 2*[P(1)]]]...]]]

Assim:
P(n) = (n-1)*[P(n-2) + P(n-1)]
Lembrando que a probabilidade é Prob(n) = P(n) / n!

A relação P(n) = (n-1)*[ P(n-1) + P(n-2) ] estabelece uma relação de subfatorial.
Assim, dividindo tudo por n! (universo) temos:
(Aconselho ao leitor a acompanhar com um papel e um lápis a partir daqui)

P(n)/n! = (n-1)*{ P(n-1) + P(n-2)] } / n!

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + P(n-2)/(n-1)!] }

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + [1/(n-1)]*[P(n-2) /(n-2)!] }

Desta forma temos:
Prob(n) = [(n-1)/n]*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = (1 - 1/n )*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [1/(n-1)]*Prob(n-2) - (1/n)*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [(n-1)/n]*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + (1/n)*Prob(n-2) ] 

Prob(n) - Prob(n-1) = - (1/n)*Prob(n-1) + [1/n]*[ Prob(n-2) ]

Prob(n) - Prob(n-1) = (-1/n)* [ Prob(n-1) - Prob(n-2) ]

Seja G(n) = Prob(n) - Prob(n-1)

G(n) = (-1/n) G(n-1)

Como:
G(2) = Prob(2) - Prob(1) = 1/2 - 0 = 1/2

G(3) = (-1/3)*(1/2) = -1/6

G(4) = (-1/4)*(1/6) = 1/24
...
G(k) = [(-1)^k] / k!

Assim:

Prob(n) = Prob(1) + [Prob(2) - Prob(1)] + [Prob(3) - Prob(2)] + ... + [Prob(n) - Prob(n-1)]

Prob(n) = 0 + G(2) + G(3) + G(4) + ... + G(n)

Prob(n) = Ʃ{ [(-1)^k] / k! }

Mas, da série de Taylor temos que:
e^x = Ʃ[ ( x^k ) / k! ], se tivermos x = -1, a série será:

e^(-1) = Ʃ{ [ (-1)^k ] / k! } = Prob(n) para n tendendo ao infinito

Logo, Prob(n) = 1/e


Exercício Resolvido - Circunferência e distância de pontos

Sejam A(-4,0) e B(0,8) pontos externos do diâmetro da circunferência de centro no ponto C. A reta que passa por C é perpendicular ao diâmetro AB intercepta o eixo das abcissas no ponto P.Qual a distancia entre os pontos B e P?
a)5
b)6
c)7
d)9
e)10

Solução:
Como temos os pontos A e B diametralmente opostos, a distância entre eles é o valor do diâmetro dessa circunferência.
A distância 'd' entre eles é dada por:

d² = (-4 - 0)² + (0 - 8)² = 16 + 64 = 80
d = 4√5

Assim, o raio dessa circunferência é 2√5 e o raio ao quadrado será 20.
Como a equação geral de uma circunferência é:
(x - xo)² + (y - yo)² = r²
Onde xo e yo são as coordenadas do centro e x e y são as coordenadas dos pontos pertencentes à circunferência, temos:

Para o ponto A:
(-4 - xo)² + (0 - yo)² = 20
16 + 8xo + xo² + yo² = 20
Para o ponto B
(0 - xo)² + (8 - yo)² = 20
xo² + 64 - 16yo + yo² = 20

Assim, como ambos são iguais a 20:
16 + 8xo + xo² + yo² = xo² + 64 - 16yo + yo²
8xo +16yo = 48
Dividindo tudo por 8 para simplificar
xo + 2yo = 6
xo = 6 - 2yo

Substituindo este valor nas equações acima:
xo² + 64 - 16yo + yo² = 20
(6 - 2yo)² + 64 - 16yo + yo² = 20
36 - 24yo + 4yo² + 64 - 16yo + yo² = 20
5yo² - 40yo + 80 = 0
Dividindo tudo por 5 para simplificar
yo² - 8yo + 16 = 0

Aplicando Bhaskara temos:
yo = 4
Logo:
xo = -2
Assim, as coordenadas do ponto central são (-2,4)

Equação da reta que passa por A e B:
No ponto A (-4,0), x = -4 e y = 0
Como a equação de uma reta é do tipo y = ax + b
0 = -4a + b

No ponto B (0,8), x = 0, y = 8
8 = 0*a + b
b = 8
a = 2
y = 2x + 8

O coeficiente angular dessa reta é 2, logo o da reta perpendicular a essa, terá coeficiente angular de -1/2, já que o coeficiente angular de retas perpendiculares possuem sinal contrário e um é o inverso do outro. Mas queremos que essa reta passe por C (-2, 4)
Para essa reta, a equação é do tipo:
y = (-1/2)x + b
Mas passa por C (-2, 4), onde x = -2 e y = 4
4 = (-1/2)*(-2) + b
4 = 1 + b
b = 3

A equação é:
y = (-1/2)x + 3

Esta reta corta o eixo das abcissas (eixo x) quando y = 0. Logo:
0 = (-1/2)x + 3
x = 6
Ponto P = (6,0)

A distância entre os pontos P (6,0) e B (0,8) é:
d² = (6-0)² + (0-8)²
d² = 36 + 64
d² = 100
d = 10

Letra e)

Abaixo o que aconteceu nesse exercício:
Em laranja, a distância 'd' entre os pontos P e B;
Em azul a circunferência;
Em preto, a reta y = 2x + 8 que passa por A e B;
Em cinza, a reta y = (-1/2)x + 3 perpendicular à que passa por A e B passando pelo ponto C e;
Em vermelho, os pontos A, B, C e P.


Exercícios Resolvido - (UFG 06) - Achar o resto da divisão

(UFG 06) O maior número primo conhecido foi descoberto no ano passado por Martin Nowak. Ele é dado por 225.964.951 –  1. (GALILEU, São Paulo, n. 169, ago. 2005. p. 43). Considerando o algoritmo de Euclides para a divisão por 8 desse número, pode-se escrever a equação 225.964.951 –  1 = 8k + r. Então o resto r da divisão por 8 do maior primo conhecido é:       

a) 0       b) 2       c) 5       d) 6       e) 7

Solução:



Assim:



Substituindo



Como



Logo:



Assim, temos que

.

Letra e)


Exercício Resolvido - Conjuntos

Em uma sala de aula, 21 alunos falam francês, 20 não falam inglês, 32 só falam inglês e 45 só falam um desses dois idiomas. Pergunta-se:
a) Qual o total de alunos da sala?
b) Quantos falam os dois idiomas?

Solução:
Então temos os seguintes casos:
Alunos que falam somente francês: Vou chamar de F
Alunos que falam somente inglês: Vou chamar de I
Alunos que falam os dois idiomas: Vou chamar de IF
Alunos que não falam nenhum idioma: Vou chamar de N

F + IF = 21, pois 21 falam francês
F + N = 20, pois 20 não falam ingês
I = 32, pois 32 falam somente inglês
F + I = 45, pois 45 falam um, e apenas um, desses dois idiomas.

Assim:
F + I = 45
I = 32
Temos que F = 13

F = 13
F + IF = 21
IF = 8

F = 13
F + N = 20
N = 7

Assim, o total de aluno é:
F + I + IF + N = 13 + 32 + 8 + 7 = 60 alunos

IF = 8, logo 8 falam os dois idiomas.


Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 27

Se α e β são dois ângulos complementares, então o determinante da matriz:
é igual a:


(A) -6
(B) -2
(C) 0
(D) 2
(E) 6

Solução:
- Ângulos complementares são ângulos que somados tem como resultado 90°
Como o determinante dessa matriz será:
Sen(α)Cos(β)*2*0 + 1*1*2 + (-1)*Sen(β)Cos(α)*4 - (-1)*2*2 - 1*4*Sen(α)Cos(β) - 0*1*Sen(β)Cos(α)
= 0 + 2 - 4Sen(β)Cos(α) + 4 - 4Sen(α)Cos(β) - 0 = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β)


Mas, das propriedades trigonométricas sabe-se que:
Sen(a + b) = Sen(a)Cos(b) + Sen(b)Cos(a)


Logo:
Det = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β) = 6 - 4*[Sen(β)Cos(α) + Sen(α)Cos(β)]
Det = 6 - 4*[Sen(α + β)]
Det = 6 - 4*[Sen(90°)]
Det = 6 - 4*[1] = 6 - 4 = 2


Letra (D)