Exercício resolvido - Geometria Analítica (reta e ponto)

Dado o ponto P(2,-1) e a reta de equação y=3x-5, escreva uma equação da reta que contém o ponto P e
a) seja paralela a reta r.
b) seja perpendicular a reta r.


Solução:
a) Uma reta paralela é aquela que tem o mesmo coeficiente angular. Logo, a reta tem a forma:
y = 3x + b

Mas ela passa por P(2,-1)
-1 = 3.2 + b
b = -7

Logo, a reta é:
y = 3x - 7
Equação da reta paralela

b) Para ser perpendicular, o produto dos coeficientes angulares das retas deve ser -1. Logo a reta tem a forma:
y = (-1/3)x + b

Mas ela passa por P(2,-1)
-1 = (-1/3).2 + b
b = -1/3

Logo, a reta é:
y = (-1/3)x - 1/3

equação da reta perpendicular




Exercício Resolvido - Geometria analítica (Ponto e Reta)

Determinar a projeção ortogonal do ponto P(2,4) sobre a reta.
x = 1+2t
y = -1+3t

Solução:
Vou fazer a solução deste exercício de duas formas. Uma envolvendo apenas conhecimentos de geometria analítica básica (mais trabalhosa), outra envolvendo conceitos vetoriais.

Método 1:
Inicialmente vou determinar a reta na forma y = a.x + b. Para isso, basta isolar o 't' nas duas igualdades acima:

x = 1 + 2t
t = (x - 1) / 2

y = -1 + 3t
t = (y + 1) / 3

(x - 1) / 2 = (y + 1) / 3
3x - 3 = 2y + 2
2y = 3x - 5
y = 1,5x - 2,5

sabe-se que retas ortogonais tem o produto dos seus coeficientes angulares igual a -1.
Logo, a reta ortogonal à reta acima, da forma:
y = ax + b
Será tal que:

a*(1,5) = -1
a = -2/3
Porém essa reta passa pelo ponto (2,4)
y = (-2/3)x + b
4 = (-2/3).2 + b
b = 4 + 4/3
b = 16/3

Logo, a reta que é ortogonal à y = 1,5x - 2,5 e passa por P(2,4) é: y = (-2/3)x + 16/3
Assim, a projeção ortogonal do ponto P na reta y = 1,5x - 2,5 será a intersecção dessas duas retas, e a intersecção ocorre quando temos os valores de y e x iguais, logo:

1,5x - 2,5 = (-2/3)x + 16/3
x(3/2 + 2/3) = 5/2 + 16/3
x(9/6 + 4/6) = 15/6 + 32/6
x(13/6) = 47/6
x = 47/13

Logo, o ponto será:
(47/13 , 38/13)


Método 2: 
Utilizando teoria vetorial
x = 1+2t
y = -1+3t
Esta reta tem a forma vetorial:
(x,y) = (1,-1) + t*(2,3)
O vetor diretor da reta é (2,3)

Logo, uma reta ortogonal a essa terá vetor diretor ortogonal a (2,3). Se eles são ortogonais e diferentes de zero, o produto escalar entre eles será zero.

Assim:
(a,b).(2,3) = 2a + 3b = 0

Arbitrando a = 1, b = -2/3. Como o valor de 'a' pode ser arbitrado e ele é diretamente proporcional a 'b', se utilizarmos a = 3, b = -2. Apenas para trabalharmos com números inteiros.

Logo, sabendo que esta reta passa pelo ponto (2,4), a reta será:
(x,y) = (2,4) + h*(3, -2)
ou
x = 2 + 3h
y = 4 - 2h

Achando o ponto de intersecção das retas:
2 + 3h = 1 + 2t -> h = (-1 + 2t) / 3
4 - 2h = -1 + 3t
4 - 2*(2t - 1) / 3 = -1 + 3t
4 - 4t/3 + 2/3 = -1 + 3t
17/3 = 13t/3
t = 17/13

Logo, x = 47/13 e y = 38/13

Gráfico do exercício abaixo:
Distância de ponto a reta




Quando a ddp numa ponte de Wheatstone é zero ?

Acima, esta esquematizada uma ponte de Wheatstone.
Na figura acima, V é a fonte de energia, e ∆V a tensão que é zero quando a ponto de Wheatstone está em equilíbrio.

Assim, para que ∆V seja zero não pode passar corrente por ∆V, pois a corrente elétrica só se desloca para pontos de menor potencial. Se ∆V é zero, então não há diferença de potencial entre seus extremos, logo a corrente será a mesma em R1 e em R4, o mesmo ocorrendo para R2 e R3. Logo, a tensão V fornecida é:

V = I23*(R2 + R3) = I14*(R1 + R4). Considerando-se que as corrente I23 e I14 deslocam-se de baixo para cima na figura.

A tensão medida em ∆V é:
∆V = R1*I14 + R2*(-I23). Perceba, o uso do sinal '-' deve-se pelo fato de que a corrente é de baixo para cima, e para que o caminho seja mantido iniciando de R1 e passando por R2 para calcular a ddp em ∆V, I23 é negativo já que I14 é positivo.
O mesmo ocorre se fizermos a malha de baixo:

∆V = R4*(-I14) + R3*I23               (1)

Porém, queremos que ∆V = 0, logo:
R1*I14 - R2*I23 = 0    (ou -R4*I14 + R3*I23 = 0, o resultado daria o mesmo.)
De onde tiramos que:
I14R2*I23 / R1

Substituindo isso EM (1):
R3*I23 - R4*(R2*I23 / R1) = 0
R3*I23 = R4*(R2*I23 / R1)
Cortando I23
R3 = (R4*R2) / R1
R3*R1 = R4*R2

Logo, para que ∆V = 0, o produto cruzado das resistências deve ser igual.


Exercícios Resolvidos - Geometria analítica



Dado um triângulo cujos vértices são A(1,1), B(4,0) e C(3,4), determine:

a) O pé da altura relativa ao vértice C.
b) A área do triângulo ABC.

Solução:

a)

Para determinar este ponto, devemos encontrar a reta que passa por C e é perpendicular à reta AB, pois a altura relativa a algum vértice de um triângulo é, por definição, a reta que passa por esse ponto e é perpendicular à reta que une os outros dois vértices.

Como retas perpendiculares tem coeficientes angulares com sinal trocado e inversas, que calcular o coeficiente angular da reta AB:

Como AB passa por A(1,1), temos:

y = ax + b

a + b = 1


Como passa por B(4,0), temos:

y = ax + b

0 = 4a + b

Mas

a + b = 1

0 = 3a + (a+b)

0 = 3a + 1

a = -1/3

b = 4/3

Coeficiente angula da reta AB: -1/3

Logo, coeficiente angular da reta altura é: 3

Assim, ela tem a forma:

y = 3x + b

Mas essa reta deve passar pelo ponto C (3,4)

4 = 3*3 + b

b = 4 - 9 = -5

Logo, a reta é:

y = 3x - 5

O pé dessa altura é o ponto que as retas AB e a reta altura se interceptam:

Reta AB:

y = (-1/3)x + 4/3

Reta altura:

y = 3x - 5

Igualando ambas:

3x - 5 = (-1/3)x + 4/3

(10/3)x = 19/3

x = (19/10) = 1,9

y = 3*(19/10) - 5

y = 5,7 - 5 = 0,7


Ponto P = (1,9 , 0,7)


b) Sabendo que a altura deste triângulo vai do ponto P(1,9 , 0,7) ao ponto C(3,4), a distância 'd' entre esses pontos será o valor desta altura:

h² = (3, 1.9)² + (4 - 0,7)²

h² = 1,1² + 3,3²

h² = 1,21 + 10,89 = 12,1

h = 3,479

O tamanho da base, é a distância do ponto A ao ponto B.

d² = (4 - 1)² + (0 - 1)²

d² = 3² + 1² = 10

d = 3,1623

A área será:



A área ainda pode ser calculada pelo determinante da matriz:



Onde a primeira coluna são as coordenadas x dos vértices, e a segunda coluna as coordenadas y.