Exercício Resolvido - Desafio

Ana tem o dobro da idade que Márcia tinha quando Ana tinha a idade que Márcia tem. Sabendo que a soma das idades delas é 42, qual é a idade de Ana e de Márcia?

Solução:

Este exercício parece ser fácil, mas a sua dificuldade esta em conseguir entendê-lo.
Um método que pode facilitar é equacioná-lo de "trás pra frente".

Seja 'A' a idade de Ana e M a idade de Márcia. Então, temos do exercício, indo de "trás pra frente" que:
A + M = 42

"... quando Ana tinha a idade que Márcia tem". Ou seja, Ana é mais velha que Márcia. Chamarei a diferença de idade delas de 'X'.
A - M = X
Ana tinha a idade de Márcia há 'X' anos atrás, e esta idade era de 'A - X'.

"...idade que Márcia tinha". Nesta época, Márcia tinha 'M - X' anos de idade. Chamarei esta idade de Márcia de 'Ma'. Então 'Ma = M - X'

Porém o exercício fala que Ana, hoje, tem o dobro da idade que Márcia tinha, ou seja:
A = 2*Ma

Agora, basta substituir:
Ma = M - X
Assim:
A = 2*(M - X) = 2M - 2X

Mas 'X = A - M'
Então:
A = 2M - 2*(A - M) = 2M - 2A + 2M
3A = 4M

Como 'A + M = 42', temos que:
A = 42 - M

Substituindo
3*(42 - M) = 4M
126 - 3M = 4M
7M = 126
M = 18

A = 42 - 18
A = 24

Ana tem 24 anos e Márcia tem 18 anos.

PS: Agora, com o exercício resolvido, é fácil de entendê-lo. Veja.
Quando Ana tinha a idade de Márcia (ou seja, quando Ana tinha 18 anos), Márcia, claro, tinha 12 anos. A idade de Ana hoje é 24 anos, o dobro de 12.


Exercício Resolvido - Prova CORSAN 2014: Probabilidade

Das dez torneiras da rede de abastecimento de um determinado bairro, três estão com defeito. Se a equipe de manutenção escolher, aleatoriamente, duas torneiras para trocar, a probabilidade de se encontrar pelo menos uma com defeito é de, aproximadamente:

a) 38% 
b) 40% 
c) 45% 
d) 48% 
e) 53%

Solução:

Para resolver esta questão eu irei usar o conceito de que a probabilidade de algo ocorrer é o número de possibilidades dividido pelo universo.
Neste caso temos 10 torneiras e existem X formas diferentes de agrupá-las duas a duas. Este é o nosso universo.

X = 10!/(2!*8!) = 45

Dessas 45 formas distintas de se agrupar 10 torneiras duas a duas, existe uma quantidade de pares formada apenas pelas torneiras boas. Estas são 7, então o número de pares formados apenas por elas é Y.

Y = 7!/(2!*5!) = 21

Logo, dos 45 pares formados pelas torneiras, certamente 21 deles não são formados por torneiras ruins. Com isso, 45 - 21 = 24 são formados por pelo menos uma ruim.

Assim, a probabilidade será:

P = 24/45 = 53,3%, letra e)



Exercício Resolvido - Trigonometria: Relações trigonométricas

Considerando-se a expressão trigonométrica x = 1 + Cos(30°), um dos possíveis produtos que a representam é igual a:

a) 2 cos² 15º 
b) 4 cos² 15º 
c) 2 sen² 30º 
d) 2 cos² 30º 
e) 4 sen² 15º

Solução:
cos(a + b) = cos(a)*cos(b) - sen(a)*sen(b)

Como 30° = 15° + 15°, podemos escrever:

Cos(30°) = Cos(15° + 15°) = Cos(15°)*Cos(15°) - Sen(15°)*Sen(15°) = Cos²(15°) - Sen²(15°)

Ainda, das relações trigonométricas, temos que:

Cos²(a) + Sen²(a) = 1, logo

Sen²(a) = 1 - Cos²(a)

Ou seja:

Sen²(15°) = 1 - Cos²(15°)

Substituindo:

Cos(30°) = Cos²(15°) - [1 - Cos²(15°)]

Cos(30°) = Cos²(15°) - 1 + Cos²(15°)

Cos(30°) = 2*Cos²(15°) - 1

Somando 1 de ambos os lados:

1 + Cos(30°) = 1 + 2*Cos²(15°) - 1

1 + Cos(30°) = 2*Cos²(15°) 

alternativa a)