Sub-espaço Vetorial e Combinação Linear

Sub-espaço Vetorial

Definição: Dado um espaço vetorial $ V $ sobre $ \Re $, um sub-espaço vetorial de $ V $ é um conjunto $ W \,  \subset \, V $, que apresenta as seguintes propriedades:
a) $ o \, \in \, W $

b) $ \forall u, \, v \, \in \, W, \, u \, + \, v \, \in \, W $
c) $ \forall \alpha \, \in \, \Re $ e $ \forall u \, \in \, W, \, \alpha u \, \in \, W $

Com estas propriedades é possível verificar a Proposição I abaixo:

Proposição I - Se $ W $ é um sub-espaço vetorial de $ V $, então $ W $ também é um espaço vetorial sobre $ \Re $.

A prova deve ser feita verificando os oito itens que definem um Espaço Vetorial (Veja O que é um Espaço Vetorial)

Faremos alguns, apenas para demonstrar:
I-a)
Este item é praticamente direto, já que todo elemento de $ W $ é também elemento de $ V $, já que $ W \, \subset \, V $, assim, sejam $ u, \, v \, \in \, W $, temos que $ u, \, v \, \in \, V $, logo certamente $ u \, + \, v \, = \, v \, + \, u $, já que $ V $ é um espaço vetorial.

I-d)
Para mostrar que um sub-espaço satisfaz este item, basta usar a definição c) acima e fazer $ \alpha \, = \, -1 $. Com isso mostramos que no sub-espaço $ W $ possui o elemento oposto.

Combinação Linear

Adotando $ V $ um espaço vetorial. Sejam $ \left \{ v_1, \, v_2, \, v_3, \, ..., \, v_n \right \} $ elementos de $ V $. Seja o conjunto de elementos formados da seguinte forma:
$$ \left [ L \right ] \, = \,  \left \{ \alpha_1 v_1 \, + \, \alpha_2 v_2 \, + \, \alpha_3 v_3 \, + \,  ... \, + \, \alpha_n u_n \, | \, \alpha_1, \, ... \, , \alpha_n \, \in \, \Re \right \} $$

É possível mostrar que [L] é um sub-espaço vetorial:
a) Basta fazer todos os $ \alpha \, = \, 0 $

b) Se $ v \, = \, \alpha_1 v_1 + \alpha_2 v_2 + ... \, e \, w \, = \,  \beta_1 v_1 + \beta_2 v_2 + ... $ pertencem a [L].
Então:
$ v \, + \, w \, = \, ( \alpha_1 \, + \, \beta_1) v_1 \, + \, ( \alpha_2 \, + \, \beta_2) v_2 \, + \, ... $ também pertence, pois $ \left ( \alpha_n \, + \, \beta_n \right ) \, \in \, \Re, \, \forall n $

c) Seja $ v \, = \, \alpha_1 v_1 + \alpha_2 v_2 + ... $
então
$ \alpha v \, = \, \alpha \times \left ( \alpha_1 v_1 + \alpha_2 v_2 + ... \right ) $
$ \alpha v \, = \, \alpha \times \alpha_1 v_1 + \alpha \times \alpha_2 v_2 + ...  $
Mas como $ \alpha $ e $ \alpha_n $ são números reais, então $ \alpha \times \alpha_n $ também será, o que garante que, para qualquer $ \alpha \, \in \, \Re $ e para qualquer $ v \, \in \, [L], \, \alpha \times v \, \in [L] $

Assim:
Cada elemento do sub-espaço [L] que acabamos de definir é uma combinação linear dos elementos $ \left \{ v_1, \, v_2, \, v_3, \, ..., \, v_n \right \} $

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.



Propriedades de um Espaço Vetorial

Após definir o que é um espaço vetorial, algumas propriedades podem ser observadas de forma quase imediata. A seguir veremos algumas delas:

Propriedade I: $\forall \alpha \, \in \, \Re, \, \alpha o \, = \, o$
Propriedade II: $\forall u \, \in \, V, \, u0 \, = \, 0$

Propriedade III: Se $\alpha u \, = \, o$ para $\alpha \, \in \, \Re$ e $u \, \in \, V$, então ou $\alpha \, = \, 0!$ ou $u \, = \, o$
Propriedade IV: $\forall \alpha \, \in \, \Re$ e $\forall u \, \in \, V, \, (-\alpha) u \, = \, \alpha (-u) \, = \, -(\alpha u)$
Propriedade V: $\forall \alpha \, \beta \, \in \, \Re$ e $\forall u \, \in \, V, \, (\alpha \, - \, \beta)u = \alpha u \, - \, \beta u$

O que é um Espaço Vetorial

Exemplo:
Prove a Propriedade I:
Das definições de Espaço Vetorial II-c e I-c, temos que:
$\alpha o \, = \, \alpha (o \, + \, o) \, = \, \alpha o \, + \, \alpha o$
Seja a igualdade $\alpha o \, = \, \alpha o$
Somando $- \alpha o$ de ambos os lados da igualdade temos:
$o \, = \, - \alpha o \, + \, \alpha o \,$
Aplicando o que foi mostrado acima, onde $\alpha 0 \, = \, \alpha o \, + \, \alpha o$ temos
$o \, = \, - \alpha o \, + \, \alpha o \, + \, \alpha o \, = \, \alpha o$
Ou seja:
$o \, = \, \alpha o$

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.

       


O que é um espaço vetorial?

Definição de um espaço vetorial

Definição: Um conjunto $V\, \neq \, \emptyset$ é um espaço vetorial sobre $ \Re $ se, e somente se, satisfizer as seguintes condições:

I - Existir uma adição em $V$ com as seguintes propriedades:
a) $u\, +\, v\, = \, v\, + \, u, \, \forall u , \, v \, \in \, V$

b) $u \, + \, (v \, + \, w) \, = \, (u \, + \, v) \, + \, w, \forall u, \, v , \, w \in \, V$
c) Existe em $V$ um elemento neutro para essa adição, simbolizado por $o$, onde:
$$u \, + \, o \, = \, u, \forall \, u \, \in \, V$$
d) Para todo elemento $u$ de $V$, existe seu oposto onde:
$$u \, + \, (-u) \, = \, o$$

II - Existir uma multiplicação $\Re \times V$ em $V$, ou seja, para todo par ($\alpha, u$) onde $\alpha \, \in \, \Re$ e $u \, \in \, V$, existe um, e apenas um elemento $v$ de $V$ tal que $\alpha \times u \, = \, v$, e para essa multiplicação tem-se, $ \forall \, \alpha, \, \beta \, \in \, \Re$:
a) $\alpha ( \beta u) \, = \, (\alpha \beta)u$
b) $(\alpha \, + \, \beta)u \, = \, \alpha u \, + \, \beta u$
c) $\alpha ( u \, + \, v) \, = \, \alpha u \, + \, \alpha v$

Portanto, qualquer que seja a "soma" e a "multiplicação" definidas em um conjunto tais que satisfaçam as condições acima, teremos que o conjunto é um espaço vetorial segundo esta soma e esta multiplicação.

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.