Propriedades de um Espaço Vetorial

Após definir o que é um espaço vetorial, algumas propriedades podem ser observadas de forma quase imediata. A seguir veremos algumas delas:

Propriedade I: $\forall \alpha \, \in \, \Re, \, \alpha o \, = \, o$
Propriedade II: $\forall u \, \in \, V, \, u0 \, = \, 0$

Propriedade III: Se $\alpha u \, = \, o$ para $\alpha \, \in \, \Re$ e $u \, \in \, V$, então ou $\alpha \, = \, 0!$ ou $u \, = \, o$
Propriedade IV: $\forall \alpha \, \in \, \Re$ e $\forall u \, \in \, V, \, (-\alpha) u \, = \, \alpha (-u) \, = \, -(\alpha u)$
Propriedade V: $\forall \alpha \, \beta \, \in \, \Re$ e $\forall u \, \in \, V, \, (\alpha \, - \, \beta)u = \alpha u \, - \, \beta u$

O que é um Espaço Vetorial

Exemplo:
Prove a Propriedade I:
Das definições de Espaço Vetorial II-c e I-c, temos que:
$\alpha o \, = \, \alpha (o \, + \, o) \, = \, \alpha o \, + \, \alpha o$
Seja a igualdade $\alpha o \, = \, \alpha o$
Somando $- \alpha o$ de ambos os lados da igualdade temos:
$o \, = \, - \alpha o \, + \, \alpha o \,$
Aplicando o que foi mostrado acima, onde $\alpha 0 \, = \, \alpha o \, + \, \alpha o$ temos
$o \, = \, - \alpha o \, + \, \alpha o \, + \, \alpha o \, = \, \alpha o$
Ou seja:
$o \, = \, \alpha o$

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.

       


2 comentários: