Exercício Resolvido - Caminhos: Análise combinatória: Vestibular UERJ 2011

Cálculo do número de caminhos mínimos entre dois pontos

Uma rede é formada de triângulos equiláteros congruentes, conforme a representação abaixo.
Uma formiga se desloca do ponto A para o ponto B sobre os lados dos triângulos, percorrendo
X caminhos distintos, cujos comprimentos totais são todos iguais a d.

Sabendo que d corresponde ao menor valor possível para os comprimentos desses caminhos, X
equivale a:
(A) 20
(B) 15
(C) 12
(D) 10

Solução:
Para saber quantos caminhos de menor comprimento são possíveis, devemos percorrer, inicialmente, um dos menores caminhos. Seja ele o caminho partindo de A, andando 4 linhas na horizontal e 2 na diagonal até chegar em B:
Número de caminhos
Neste caso, podemos dizer que a formiga percorreu o caminho HHHHDD, já que foi quatro vezes para a esquerda na horizontal, e duas vezes para cima na direção diagonal.
Assim, para saber quantos caminho de comprimento igual a esse basta calcular o número de formas de combinar as quatro letras H e as duas D para formar "palavras" diferentes, ou seja, devemos calcular o número de anagramas possíveis de serem formados com HHHHDD.
Supondo que todas as seis letras sejam diferentes, podemos dizer que é possível "embaralhá-las" de K formas distintas, onde:

K = 6*5*4*3*2*1 = 6! = 720

Porém, temos quatro letras H e duas D. Com isso num mesmo anagrama ao trocarmos dois H's de lugar, o anagrama segue o mesmo. Por exemplo, seja a palavra HDHDHH. Ao trocar o último H com o primeiro H, a palavra continua sendo exatamente a mesma e como são quatro letras H's que temos, existem 4*3*2*1 = 4! combinações de H's possíveis para cada palavra. O mesmo com a letra D, que possui duas iguais, neste caso teremos 2*1 = 2! combinações. Assim, o número de caminhos diferentes será:

Neste caso são 15 caminhos de comprimento mínimo possíveis. Resposta (B)


Força de Euler, Einstein, Coriolis e Centrífuga: Referencial não inercial.

Demonstração das forças que atuam em uma partícula ligada a um referencial não inercial: Força de Euler, de Einsteins, de Coriolis e Centrífuga (centrípeta).

Demonstre todas as possíveis forças que atuam em uma partícula em um referencial não inercial.

Solução:
Por motivos didáticos e para simplificar o post, a demonstração será feita em duas dimensões, porém o resultado pode ser estendido para um caso tridimensional. Isso irá facilitar bastante a visualização.

Veja o desenho abaixo que representa um referencial fixo (inercial, em preto) formado pelos eixos x, y e z, onde z esta saindo da tela em direção ao leitor. Em azul esta o referencial não inercial e o ponto P onde queremos calcular as forças. Seria algo como um avião, onde o ponto P é uma pessoa dentro deste avião. Assim, definimos as coordenadas deste ponto em relação a um referencial no avião, porém como este avião faz curvas e acelera este referencial é não inercial.



Obs.: Vale salientar que o tamanho dos eixos (x,y) estão diferentes dos eixos (xn, yn) mas todos eles têm módulo unitário. Na figura, x e y representam a direção onde aponta os vetores unitário x e y.

Do que se pode ver da figura, temos o vetor posição do ponto P descrito como:

r = R + rn

Porém, o vetor R possui suas coordenadas escritas no referencial inercial (x,y,z), mas o vetor rn não. As coordenadas de rn estão descritas no referencial (xn, yn, zn). Assim, podemos escrever os vetores Rrn segundo seus versores:


Assim, temos definida a posição do ponto P, que é dada pelo vetor r.

Para obter a velocidade do ponto P, basta derivar em relação ao tempo o vetor r. Neste caso, é importante perceber que os versores inerciais (x,y,z) não se alteram, porém os não inerciais mudam com o tempo. Ainda, como estabelecemos que o movimento será bidimensional, então o sistema não inercial poderá rotacionar apenas em torno do eixo zn, ou seja, existe uma velocidade angular ω na direção zn. Esta velocidade angular irá alterar o ângulo formado entre os sistemas de referência. Veja na figura a seguir:

Força de coriolis

Nesta última figura fica fácil perceber algumas coisas importantes:


Voltando ao resultado do vetor r que obtivemos anteriormente:


Derivando no tempo temos:


Porém, como os eixos x e y são constantes, suas derivadas serão nulas o que elimina o termo na qual eles estão multiplicando. O mesmo ocorre para os eixos z e zn, já que estamos considerando que o movimento é bidimensional, neste caso eles não alteram suas direções, mantendo-se constante. Isso ocorre pois toda rotação se da nas direções z (ou zn, já que eles têm mesmo direção e sentido). Neste caso temos:


Definindo algumas simplificações:


Onde V seria a velocidade com que a origem do referencial não inercial se afasta da origem do referencial inercial.


Onde vn seria a velocidade do ponto P em relação ao referencial não inercial.

Restou o termo:


Para isso, precisamos derivar os versores do referencial não inercial:


Mas, vejam que feliz coincidência. Observando as relações obtidas antes, temos que:


Fazendo o mesmo para o dyn/dt chegamos que:


Assim:


Porém, como yn = zn × xnxn = -zn × yn, onde × é o produto vetorial e, ainda, sabendo que a velocidade angular tem direção zn, temos:


Desta forma:


Para obtenção das acelerações, basta que derivemos mais uma vez:


Mas, de forma similar obtemos que:


Que seria a aceleração com que o referencial não inercial se afasta do referencial inercial.



onde, já foi mostrado que:


Assim:


Que pode ser escrito como:


Multiplicando pela massa todos os termos, temos a força que age no corpo, assim teremos:


Mudando para força (F):


Podendo ser escrito da seguinte forma:


Perceba que se o referencial fosse inercial, o lado esquerdo da igualdade deveria ser nulo segundo a 2ª Lei de Newton. Isolando a força Fn temos a 2ª Lei de Newton para um referencial não inercial e podemos "nomear" cada uma das forças (que na verdade são pseudo forças, pois são reações aparentes que uma partícula sente num referencial não inercial) que ficam do lado direito da igualdade, segundo cada um dos físicos que às descobriram:


Veja que todas elas têm sinal '-' pois representam "reações". A seguir alguns comentários com relação a essas forças.

A pseudo força Centrífuga é facilmente percebida quado estamos num carro, por exemplo, e ele faz uma curva. Neste caso, há uma tendência de sermos empurrados para fora do carro (ou para fora da curva). Esta tendência é a reação da força centrípeta, que age no carro puxando-o para dentro.

A pseudo força de Euler ocorre quando há variação da velocidade angular. Ela tem direção oposta à variação da velocidade angular. Imagine um disco girando e você sobre ele em pé e imóvel. Se a velocidade angular for constante irá agir a força centrípeta na direção radial, porém se a velocidade angular começar a aumentar, é possível que você se desequilibre e caia para trás ou para frente (dependendo se a velocidade angular aumenta ou diminui). Esta é a pseudo força de Euler. Note que não houve ação de força nenhuma mas sim um torque que fez com que o disco girasse mais rápido, assim a aceleração angular fez aumentar a velocidade tangente no ponto em que você estava em pé e com isso, aumentou-se a força de atrito entre você e o disco. Surgiu uma força, portanto, devido ao aumento da velocidade angular. A reação a esta força é a pseudo força de Euler. 

A pseudo força de Coriolis é percebida, por exemplo, na brincadeira em que um pessoa, sentada em uma cadeira, gira com os braços abertos. Em determinado momento, ao puxar os braços em direção ao corpo sua velocidade de rotação aumenta. Para um observador que vê de fora o que esta ocorrendo, nada se altera o que ocorre é apenas a conservação do momento angular. Porém a pessoa sentada na cadeira sente que, ao puxar seus braços em direção ao corpo estes tendem a girar mais rápido, já que sua distância em relação ao eixo de rotação esta diminuindo. Desta forma, esta pessoa precisa fazer uma força "segurando seu braço" para que ele não gire mais rápido. Assim, todo o corpo irá aumentar sua velocidade angular. Neste caso, a pessoa sentada sente como se uma força fizesse acelerar sua rotação. Esta é a ação da pseudo força de Couriolis.

A pseudo força de Einstein  é uma reação ao movimento de translação do corpo e ela é constantemente percebida por nós. Por exemplo, quando um avião vai decolar e somos "empurrados" para trás. Outro exemplo interessante é o de um bloco sobre um plano inclinado. Se não houver atrito este bloco vai escorregar para baixo. Porém, se este plano inclinado for acelerado esta aceleração irá "agir" no bloco fazendo com que a velocidade com que ele escorrega seja alterada. Esta pseudo força é chamada de Força de Einstein.


Exercício Resolvido - Probabilidade: VESTIBULAR UERJ 2011

VESTIBULAR UERJ 2011 - QUESTÃO 34 SOBRE PROBABILIDADE

Uma fábrica produz sucos com os seguintes sabores: uva, pêssego e laranja. Considere uma caixa
com 12 garrafas desses sucos, sendo 4 garrafas de cada sabor.
Retirando-se, ao acaso, 2 garrafas dessa caixa, a probabilidade de que ambas contenham suco com o mesmo sabor equivale a:
(A) 9,1%
(B) 18,2%
(C) 27,3%
(D) 36,4%

Solução:
Este exercício deve ser feito em duas "etapas". A primeira onde temos 12 garrafas de suco na caixa e uma delas é retirada. A segunda etapa ocorre quando vamos retirar a segunda garrafa de suco, pois agora já não são mais 12 garrafas que temos na caixa, e sim 11. Além disso, se desejamos retirar duas garrafas de suco do mesmo sabor, ao retirar o segundo suco terão apenas 3 garrafas do sabor que desejamos, e não 4 como antes. Entendendo isso, vamos ao exercício:








No primeiro momento temos 12 garrafas dentro da caixa e retiramos uma delas. Perceba que o exercício não especifica qual suco que ele quer que sejam tirados, mas apenas que devem ser dois do mesmo sabor, neste caso, podem ser dois sucos de uva, pêssego ou laranja. Assim, ao retirar o primeiro suco, podemos retirar de qualquer sabor, e isso claro, tem 100% de chance de acontecer já que a probabilidade de retirar qualquer suco de dentro da caixa é 1.

No segundo momento, temos apenas 11 sucos na caixa e, agora sim, desejamos tirar um suco do mesmo sabor do primeiro. Neste caso, temos apenas 3 garrafas na caixa que possui 11 sucos. Aqui, a probabilidade será de:



Como a primeira probabilidade é 100%, então ela não interfere no resultado final. Logo,  resposta é letra (C).


Exercício Resolvido - Resistência Equivalente: VESTIBULAR UERJ 2011

VESTIBULAR UERJ 2011 - QUESTÃO 26 SOBRE RESISTÊNCIA EQUIVALENTE EM PARALELO

Observe a representação do trecho de um circuito elétrico entre os pontos X e Y, contendo três resistores cujas resistências medem, em ohms, a, b e c.
Exercício resolvido de resistência equivalente

Admita que a sequência (a, b, c) é uma progressão geométrica de razão 1/2 e que a resistência
equivalente entre X e Y mede 2,0 Ω.
O valor, em ohms, de (a + b + c) é igual a:

(A) 21,0
(B) 22,5
(C) 24,0
(D) 24,5


Solução:
Da figura podemos perceber que as três resistências estão em paralelo. Desta forma, pela fórmula para obtenção da resistência equivalente (saiba mais) quando temos resistências em paralelo temos:



Assim, podemos fazer a soma das frações do lado direito da igualdade para poder obter o valor da resistência equivalente:





Mas o exercício nos diz que (a, b, c) formam uma Progressão Geométrica (Veja Tudo sobre Progressão Geométrica), então:



Substituindo estes resultados na equação temos:



Veja também:
Exercício Resolvido - Resistência equivalente

Mas o exercício nos informa que:



Substituindo:



Temos, portanto que a = 14Ω

Logo, pelas relações que obtemos acima onde b = aq e c = aq², para q = 1/2 temos que b = 7Ω e c = 3,5Ω

Logo:

a + b + c = 24,5Ω

Resposta (D)


Exercício Resolvido - Queda livre: VESTIBULAR UERJ 2011

Vestibular UERJ 2011 questão 22 sobre queda livre

Um trem em alta velocidade desloca-se ao longo de um trecho retilíneo a uma velocidade constante de 108 km/h. Um passageiro em repouso arremessa horizontalmente ao piso do vagão, de uma altura de 1 m, na mesma direção e sentido do deslocamento do trem, uma bola de borracha que atinge esse piso a uma distância de 5 m do ponto de arremesso.
O intervalo de tempo, em segundos, que a bola leva para atingir o piso é cerca de:
(A) 0,05
(B) 0,20
(C) 0,45
(D) 1,00

Solução:
Inicialmente é preciso fazer a conversão das unidades para haver consistência:



Como pode ser visto na figura ilustrativa abaixo a bola irá realizar um movimento de um lançamento oblíquo. Isto ocorre pois a velocidade horizontal da bola é a velocidade que o passageiro vai lançar ela. Porém, o cálculo do tempo que a bola vai levar para chegar ao chão em nada tem a ver com a velocidade de lançamento e tampouco com a velocidade do trem. Uma característica do lançamento oblíquo é a independência dos movimentos verticais e horizontais, assim, o tempo que a bola vai levar para chegar ao solo irá depende apenas do seu movimento de queda livre, ou seja, da ação da gravidade sobre a bola.

UERJ Queda Livre MRUV
Trajeto da bola (vermelha) dentro do trem (azul). A bola percorre verticalmente um movimento de queda livre (MRUV) e, horizontalmente, um Movimento Retilíneo Uniforme (MRU).
Como o valor da gravidade não é fornecido, chamarei de g e se for necessário usar algum valor numérico farei isso no fim do exercício.
Assim, na vertical a bolinha percorre um movimento de queda livre com velocidade inicial nula, pois e bola só tem velocidade inicial na horizontal:

Exercício Resolvido - Queda Livre: ITA 2003

Como ele pede uma resposta aproximada (no enunciado está "O intervalo de tempo (...) é cerca de:"), podemos adotar que g ≈ 10 m/s², assim:



A resposta correta é (C).


5 Exercícios Resolvidos clássicos de MRUV e MRU para você fixar o assunto.

Veja 5 exercícios resolvidos de MRUV e MRU

1 - O gráfico abaixo mostra a velocidade de dois ciclistas (C1 e C2) em função do tempo. Ambos partem
da posição inicial zero pata t = 0 e percorrem trajetórias retilíneas no mesmo sentido. Com base nos dados da figura, determine:

a) o valor da aceleração do ciclista C1 no instante t = 5 s;

b) a distância entre os ciclistas no instante em que eles têm a mesma velocidade.


Exercício Resolvido de MRU
Gráfico da velocidade do ciclista 1 (em azul) e do ciclista 2 (em vermelho). É possível verificar que ambos desenvolvem um movimento MRUV inicialmente, e depois MRU.

2 - Numa prova de 100 m rasos, um atleta consegue percorrê-los em 10 s. O gráfico a seguir mostra,
aproximadamente, como varia a velocidade deste atleta durante a prova. Com isso determine:

a) qual a velocidade média durante os 10 s.

b) estime, a partir do gráfico, um valor razoável para vf.

Gráfico da velocidade do atleta nos 10 s de duração da prova

3 - A maior aceleração (ou desaceleração) que é desejável que os passageiros de um trem urbano sintam é de 2 m/s². Se a distância entre duas estações consecutivas é de 800 m e supondo que o trem pare em todas as estações, calcule:

a) a máxima velocidade que o trem pode atingir.

b) o tempo mínimo que o trem deve levar de uma estação até a outra.


4 - Um objeto parte do repouso de um ponto A e percorre, em Movimento Retilíneo Uniformemente Variado um trecho até outro ponto B. No mesmo instante em que o primeiro objeto parte de A para B, outro parte de B em direção à A em Movimento Retilíneo Uniforme (velocidade constante). A distância entre A e B é de 50 m. Depois de 10 s da partida, os objetos se cruzam exatamente no meio do percurso AB. Com isso, calcule:

a) a velocidade do móvel que partiu de B.

b) a velocidade do objeto que partiu de A chegará em B.

5 - Um ciclista se desloca de acordo com a equação S = 40 + 10t + t² com dados no SI. Com isso, determine:

a) a posição inicial do ciclista, a velocidade inicial do ciclista e a aceleração do ciclista

b) sua posição S e velocidade V quando o tempo for 10 s

Soluções:

Exercício 1 - 
a) A equação da velocidade é dada por:

Como para t = 0, V0C1 = 0, temos:


Porém, no gráfico a reta passa pelo ponto VC1 = 4 m/s, t = 10 s. Então:


Como a velocidade de C1 cresce linearmente no trecho de 0 s até 10 s, então sua aceleração é constante. Assim, neste intervalo de tempo:


b) Vendo o gráfico percebemos que há uma intersecção dos gráficos. 

Ponto onde ambos os ciclistas possuem a mesma velocidade marcado com um círculo em preto

Como este é um gráfico da velocidade pelo tempo, a intersecção ocorre quando ambos têm a mesma velocidade e, é possível perceber que ela ocorre quando o ciclista C2 já está com velocidade contante de 2,4 m/s. Agora, é preciso saber qual o tempo, porém isso fica simples da saber pois já temos a equação da velocidade do ciclista C1 até 10 s.

Então:


Agora, é preciso calcular a posição de cada um dos ciclistas para saber a diferença entre elas, assim temos a distância entre eles:
A equação da posição em MRUV é:


No caso do exercício temos que até 6 s, o ciclista C1 esteve unicamente em movimento MRUV, pois o gráfico de sua velocidade manteve-se como uma reta crescente sem mudança brusca de inclinação. Porém, não pode-se dizer o mesmo do ciclista C2, que no tempo t = 5 s sua velocidade passa a ser constante. Assim, ele desenvolve um Movimento Retilíneo Uniformemente Variado até o tempo de 5 s e a partir daí, mantém sua velocidade constante de 2,4 m/s. Precisamos, portanto, saber qual é a equação da velocidade do ciclista C2 até t = 5s.


Da mesma forma o seu gráfico começa com V0C2 = 0 e passa pelo ponto VC2 = 2,4 quando t = 5. Assim, substituindo esse valores na equação temos:


Então:


A posição de C1 quando t = 6 s:



A posição de C2 quando t = 6 s deve ser calculada somando os dois trechos, já que ele desenvolve um Movimento Retilíneo Uniformemente Variado até 5 s e um Movimento Retilíneo Uniforme a partir deste tempo. Assim, calculamos o deslocamento de C2 até t = 5 s:



Distância percorrida no intervalo de tempo t = 5 s até t = 6 s, ou seja, em apenas 1 segundo. Aqui, como não há aceleração pois a velocidade é constante (V = 2,4 m/s), basta usar a mesma equação porém com aceleração nula (isso irá resultar a equação da posição de MRU)


Assim, a distância percorrida pelo ciclista C2 será de:


A distância entre eles será de 8,4 - 7,2 = 1,2 m


Exercício 2 -
a) Como o atleta percorre 100 m em 10 s, sua velocidade média será de:

MRU - Movimento Retilíneo Uniforme

b) Aproximando o gráfico na primeira parte por uma reta, até t = 5 s temos:


Como mostrado em amarelo, a aproximação fica abaixo do real. Há duas áreas formadas pelas curvas; uma primeira fica acima da reta o que garante que a reta esta sub-estimando a velocidade; e uma segunda que fica abaixo da reta, próxima do ponto marcado em preto, que super-estima a velocidade. Porém, visivelmente a primeira área é muito superior à segunda, o que garante que a aproximação por reta é sub-estimada, ou seja, o deslocamento calculado no primeiro intervalo usando a reta será inferior ao real deslocamento. Porém, vamos calcular quando seria vf se os gráficos fossem as retas:

Precisamos, primeiramente, calcular a aceleração no primeiro trecho, imaginando que seja uma eta:


Como V0 = 0 e o tempo final é t = 5 s


Assim, o deslocamento no primeiro trecho será:


No segundo treco ( entre t = 5 s e t = 10 s, ou seja, num intervalo de tempo de 5 s) a velocidade foi aproximada para uma constante, V = Vf. Neste trecho, o deslocamento é dado por:


O deslocamento total será:


Mas o deslocamento total é de 100 m:


Porém, como sabemos que o primeiro trecho o deslocamento foi um pouco maior, ou seja:


Desta forma, o Stotal real será um pouco maior, o que irá causar uma leve redução de Vf. Assim, um valor bastante coerente para Vf é de 13 m/s.


Exercício 3 -
a) A situação de maior velocidade será se o trem partir com aceleração de 2 m/s² a, no meio do trajeto, desacelerar a 2 m/s². Neste caso, ele irá percorrer 400 m com aceleração de 2 m/s² e 400 m com a desaceleração de mesma intensidade. Usando a equação de Torricelli temos:


onde d é o deslocamento. Neste caso, temos d = 400 m, a = 2 m/s² e como ele parte do repouso, V0 = 0, então:


b) O tempo pode ser calculado pela equação da velocidade. Na primeira metade ele alcança a velocidade de 40 m/s, assim:


Como a primeira metade do trajeto é percorrida com aceleração de 2 m/s² e, da mesma forma, a segunda metade é percorrida com desaceleração de 2 m/s², o tempo de cada trecho é o mesmo. Assim o tempo total será de 40 s.

Veja também:
5 Exercícios Resolvidos de Resistência Equivalente Para Você Fixar o Assunto

Exercício 4 -

a) O objeto que parte de A se desloca em MRUV. Assim, sua posição é dada por:


Como ele parte do repouso e desconsiderando sua posição inicial, temos:


O objeto que parte de B, se desloca em MRU:


O exercício fala que após 10 s eles se encontram no meio do percurso, ou seja, eles percorreram 25 m. Assim SB = 25 m e SA = 25 m.
Substituindo na equação de SB para calcular sua velocidade, temos:


b) Substituindo os dados na equação de SA temos:

Usando a equação de Torricelli temos:


Substituindo os valores para saber a velocidade do objeto que partiu de A no ponto B:


Exercício 5 -

Se você chegou até aqui, parabéns, a sua vontade em aprender este assunto já me fala muito sobre você.

É preciso se concentrar e estar atento aos detalhes, além de exercitar e isso exige dedicação.

Vamos ao exercício 5:

a) Neste exercício basta saber que a equação de movimento é dada por:



Como ele se desloca de acordo com a equação:

 

Então:
Posição inicial S0 = 40 m
Velocidade inicial V0 = 10 m/s
Aceleração a = 2 m/s²

b) Para o tempo de 10 s, a sua posição será:



Como a velocidade em MRUV é dada pela equação:



Temos, no tempo 10 s: